- A serotonergic (5-HT2) receptor mechanism in the laterodorsal tegmental nucleus participates in regulating the pattern of rapid-eye-movement sleep occurrence in the rat.
A serotonergic (5-HT2) receptor mechanism in the laterodorsal tegmental nucleus participates in regulating the pattern of rapid-eye-movement sleep occurrence in the rat.
Serotonin [5-hydroxytryptamine (5-HT)] plays an inhibitory role in rapid-eye-movement (REM) sleep although the exact mechanism(s) and site(s) of action are not known. It is commonly assumed that 5-HT exerts its influence on REM sleep via input from the dorsal raphe nucleus (DRN) directly onto cholinergic neurons involved in the generation of REM sleep. 5-HT(2) receptor sites have been found on cholinergic neurons in the laterodorsal tegmental nucleus (LDT) and pedunculopontine tegmental nucleus (PPT). We locally microinjected the 5-HT(2) agonist DOI ((+/-)-1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane HCl) and the 5-HT(2) antagonist, ketanserin, in LDT in rats to determine whether these receptor sites are involved in the regulation of behavioral states. DOI and ketanserin primarily affected REM sleep, by significantly decreasing or increasing, respectively, the number, but not the duration, of REM sleep episodes. DOI specifically decreased the occurrence of clusters of REM sleep episodes appearing at intervals less than or equal to 3 min (sequential episodes) without affecting single episodes separated by more than 3 min. An opposite effect of ketanserin on REM sleep clusters, although not statistically significant, was observed.