Skip to Content
Merck
CN
  • HDAC3 and HDAC8 PROTAC dual degrader reveals roles of histone acetylation in gene regulation.

HDAC3 and HDAC8 PROTAC dual degrader reveals roles of histone acetylation in gene regulation.

Cell chemical biology (2023-08-13)
Yufeng Xiao, Seth Hale, Nikee Awasthee, Chengcheng Meng, Xuan Zhang, Yi Liu, Haocheng Ding, Zhiguang Huo, Dongwen Lv, Weizhou Zhang, Mei He, Guangrong Zheng, Daiqing Liao
ABSTRACT

HDAC3 and HDAC8 have critical biological functions and represent highly sought-after therapeutic targets. Because histone deacetylases (HDACs) have a very conserved catalytic domain, developing isozyme-selective inhibitors remains challenging. HDAC3/8 also have deacetylase-independent activity, which cannot be blocked by conventional enzymatic inhibitors. Proteolysis-targeting chimeras (PROTACs) can selectively degrade a target enzyme, abolishing both enzymatic and scaffolding function. Here, we report a novel HDAC3/8 dual degrader YX968 that induces highly potent, rapid, and selective degradation of both HDAC3/8 without triggering pan-HDAC inhibitory effects. Unbiased quantitative proteomic experiments confirmed its high selectivity. HDAC3/8 degradation by YX968 does not induce histone hyperacetylation and broad transcriptomic perturbation. Thus, histone hyperacetylation may be a major factor for altering transcription. YX968 promotes apoptosis and kills cancer cells with a high potency in vitro. YX968 thus represents a new probe for dissecting the complex biological functions of HDAC3/8.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Anti-acetyl SMC3 Antibody (Lys105/106), clone 21A7, clone 21A7, from mouse
Sigma-Aldrich
Monoclonal Anti-α-Tubulin antibody produced in mouse, clone B-5-1-2, ascites fluid
Sigma-Aldrich
Z-Leu-Leu-Leu-al, ≥90% (HPLC)