- Differential Immunometabolic Effects of High-Fat Diets Containing Coconut, Sunflower, and Extra Virgin Olive Oils in Female Mice.
Differential Immunometabolic Effects of High-Fat Diets Containing Coconut, Sunflower, and Extra Virgin Olive Oils in Female Mice.
To compare the effects of three high-fat diets (HFDs) based on coconut, sunflower, or extra virgin olive oils (EVOOs) on adipose tissue, metabolism, and inflammation. Mice are fed for 16 weeks on their respective HFD. HFD based on coconut oil produces significantly lower body weight than EVOO- or sunflower oil-based HFDs. Furthermore, the coconut oil HFD leads to metabolic disturbances such as reduction of circulating leptin and adiponectin concentrations, hypertriglyceridemia, hepatomegaly, and liver triglyceride accumulation. Likewise, this diet produces an increase in serum pro-inflammatory cytokines (interleukin 6 [IL-6] and tumor necrosis factor-α [TNF-α]). In white (WAT) and brown (BAT) adipose tissue, the HFD based on coconut oil does not cause significant changes in the expression of studied proteins related to thermogenesis (uncoupling protein 1 [UCP-1]), mitochondrial biogenesis, and browning (peroxisome proliferator-activated receptor-γ coactivator 1α [PGC-1α] and nuclear factor E2-related factor 2 [Nrf2]). However, the HFD based on EVOO induces upregulation of UCP-1, PGC-1α, and Nrf2 expression in BAT, increases the expression of UCP-1 and PGC-1α in inguinal WAT, and enhances the expression of PGC-1α in epididymal WAT. An HFD based on coconut oil could reduce circulating leptin and adiponectin concentrations, increase the liver fat content, raise serum triglycerides, and promote inflammation by increasing circulating pro-inflammatory cytokines, while an EVOO-based HFD could increase thermogenic activity.