Skip to Content
Merck
CN
  • Striatal Injury Induces Overall Brain Alteration at the Pallial, Thalamic, and Cerebellar Levels.

Striatal Injury Induces Overall Brain Alteration at the Pallial, Thalamic, and Cerebellar Levels.

Biology (2022-03-27)
Kristina Lukacova, Julie Hamaide, Ladislav Baciak, Annemie Van der Linden, Lubica Kubikova
ABSTRACT

The striatal region Area X plays an important role during song learning, sequencing, and variability in songbirds. A previous study revealed that neurotoxic damage within Area X results in micro and macrostructural changes across the entire brain, including the downstream dorsal thalamus and both the upstream pallial nucleus HVC (proper name) and the deep cerebellar nuclei (DCN). Here, we specify these changes on cellular and gene expression levels. We found decreased cell density in the thalamic and cerebellar areas and HVC, but it was not related to neuronal loss. On the contrary, perineuronal nets (PNNs) in HVC increased for up to 2 months post-lesion, suggesting their protecting role. The synaptic plasticity marker Forkhead box protein P2 (FoxP2) showed a bi-phasic increase at 8 days and 3 months post-lesion, indicating a massive synaptic rebuilding. The later increase in HVC was associated with the increased number of new neurons. These data suggest that the damage in the striatal vocal nucleus induces cellular and gene expression alterations in both the efferent and afferent destinations. These changes may be long-lasting and involve plasticity and neural protection mechanisms in the areas directly connected to the injury site and also to distant areas, such as the cerebellum.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Anti-DCX (AB1) antibody produced in rabbit, affinity isolated antibody
Sigma-Aldrich
Monoclonal Anti-Chondroitin Sulfate antibody produced in mouse, clone CS-56, ascites fluid
Sigma-Aldrich
Anti-NeuN Antibody, clone A60, clone A60, Chemicon®, from mouse