- Epithelial cell transforming 2 is regulated by Yes-associated protein 1 and mediates pancreatic cancer progression and metastasis.
Epithelial cell transforming 2 is regulated by Yes-associated protein 1 and mediates pancreatic cancer progression and metastasis.
Pancreatic ductal adenocarcinoma (PDAC) is highly metastatic and represents one of the deadliest forms of human cancers. Previous studies showed that activation of Yes-associated protein 1 (YAP1) plays a key role in malignant transformation in the pancreas. In this study, we found that YAP1 regulates the expression of epithelial cell transforming 2 (ECT2), a guanine nucleotide exchange factor for Rho-like GTPases. By immunohistochemistry analysis of human tissues, we show that ECT2 is highly expressed in primary PDAC and liver metastasis but not in normal pancreas. These correlations were also observed in a mouse model of PDAC, where pancreatic transformation is driven by mutants of Kras and Trp53. Notably, nuclear ECT2 is upregulated in the transition from preneoplastic lesions to PDAC. High levels of YAP1 or ECT2 expression correlates with the poor overall survival rate of patients with PDAC. We further demonstrate that ECT2 is required for pancreatic cancer cell proliferation and migration in vitro. Finally, using a syngeneic orthotopic xenograft mouse model for pancreatic cancer, we found that ablation of ECT2 expression reduces pancreatic cancer growth and dissemination to the liver. These findings highlight the critical role of ECT2 in promoting pancreatic cancer growth and metastasis and provides insights into the development of novel methods for early detection and treatment.NEW & NOTEWORTHY Pancreatic ductal adenocarcinoma is one of the deadliest forms of human cancers. In this study, we identified a novel signaling mechanism involved in PDAC progression and metastasis. Yes-associated protein 1 mediates the expression of epithelial cell transforming 2, which is elevated in PDAC and correlates with poor survival. Epithelial cell transforming 2 is required for PDAC growth and metastasis. This study provides insights into the development of novel methods for early detection and treatment of PDAC.