Skip to Content
Merck
CN
  • Increased pathogenicity of pneumococcal serotype 1 is driven by rapid autolysis and release of pneumolysin.

Increased pathogenicity of pneumococcal serotype 1 is driven by rapid autolysis and release of pneumolysin.

Nature communications (2020-04-22)
Laura C Jacques, Stavros Panagiotou, Murielle Baltazar, Madikay Senghore, Shadia Khandaker, Rong Xu, Laura Bricio-Moreno, Marie Yang, Christopher G Dowson, Dean B Everett, Daniel R Neill, Aras Kadioglu
ABSTRACT

Streptococcus pneumoniae serotype 1 is the predominant cause of invasive pneumococcal disease in sub-Saharan Africa, but the mechanism behind its increased invasiveness is not well understood. Here, we use mouse models of lung infection to identify virulence factors associated with severe bacteraemic pneumonia during serotype-1 (ST217) infection. We use BALB/c mice, which are highly resistant to pneumococcal pneumonia when infected with other serotypes. However, we observe 100% mortality and high levels of bacteraemia within 24 hours when BALB/c mice are intranasally infected with ST217. Serotype 1 produces large quantities of pneumolysin, which is rapidly released due to high levels of bacterial autolysis. This leads to substantial levels of cellular cytotoxicity and breakdown of tight junctions between cells, allowing a route for rapid bacterial dissemination from the respiratory tract into the blood. Thus, our results offer an explanation for the increased invasiveness of serotype 1.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Alkaline Phosphatase Yellow (pNPP) Liquid Substrate System for ELISA, ready to use solution