- Ste20-like Kinase-mediated Control of Actin Polymerization Is a New Mechanism for Thin Filament-associated Regulation of Airway Smooth Muscle Contraction.
Ste20-like Kinase-mediated Control of Actin Polymerization Is a New Mechanism for Thin Filament-associated Regulation of Airway Smooth Muscle Contraction.
It has been reported that actin polymerization is regulated by protein tyrosine phosphorylation in smooth muscle on contractile stimulation. The role of protein serine/threonine phosphorylation in modulating actin dynamics is underinvestigated. SLK (Ste20-like kinase) is a serine/threonine protein kinase that plays a role in apoptosis, cell cycle, proliferation, and migration. The function of SLK in smooth muscle is mostly unknown. Here, SLK knockdown (KD) inhibited acetylcholine (ACh)-induced actin polymerization and contraction without affecting myosin light chain phosphorylation at Ser-19 in human airway smooth muscle. Stimulation with ACh induced paxillin phosphorylation at Ser-272, which was reduced in SLK KD cells. However, SLK did not catalyze paxillin Ser-272 phosphorylation in vitro. But, SLK KD attenuated Plk1 (polo-like kinase 1) phosphorylation at Thr-210. Plk1 mediated paxillin phosphorylation at Ser-272 in vitro. Expression of the nonphosphorylatable paxillin mutant S272A (substitution of alanine at Ser-272) attenuated the agonist-enhanced F-actin/G-actin ratios without affecting myosin light chain phosphorylation. Because N-WASP (neuronal Wiskott-Aldrich Syndrome Protein) phosphorylation at Tyr-256 (an indication of its activation) promotes actin polymerization, we also assessed the role of paxillin phosphorylation in N-WASP activation. S272A paxillin inhibited the ACh-enhanced N-WASP phosphorylation at Tyr-256. Together, these results suggest that SLK regulates paxillin phosphorylation at Ser-272 via Plk1, which modulates N-WASP activation and actin polymerization in smooth muscle. SLK-mediated actin cytoskeletal reorganization may facilitate force transmission between the contractile units and the extracellular matrix.