- Effects of different fatty acids composition of phosphatidylcholine on brain function of dementia mice induced by scopolamine.
Effects of different fatty acids composition of phosphatidylcholine on brain function of dementia mice induced by scopolamine.
Phosphatidylcholine (PC), the major source of dietary choline, has been demonstrated to improve the capability of learning and memory in rodent and the amelioration of long-chain n-3 polyunsaturated fatty acids (PUFA) on anti-aging and anti-oxidation is widely known as well. In this study, three kinds of PC were chose to demonstrate the role of different fatty acids composition on glycerol backbone in improving the brain function of mice induced by scopolamine which was used to impair cholinergic system and cause oxidative stress. Male BALB/c mice were randomly divided into 5 groups: model (M) group, control (Con) group, egg yolk lecithin (EL) group, squid PC (SQ-PC) group and sea cucumber PC (SC-PC) group. The intraperitoneal injection of scopolamine hydrobromide (5 mg/kg) was carried out on the 8(th) of group feeding and sustained daily until the end of test. Morris water maze test was used to evaluate the improvement of cognitive decline and the activity of acetylcholinesterase (AchE), superoxide dismutase (SOD) and monoamine oxidase (MAO) and malondialdehyde (MDA) content in brain were measured to assess the physiological changes. In behavior test, the latency of PC groups was significantly reduced, while number of crossing the platform and time in target quadrant were increased in comparison with M group and the improvements of SQ-PC and SC-PC were better than that of EL (P < 0.05). Similar trend was observed in physiological changes. The AchE activity was effectively decreased and the SOD activity increased in hippocampus, cortex and white matter when comparing PC groups with M group. SQ-PC, SC-PC and EL respectively showed 22.82, 28.80 and 11.81 % decrease in MDA level in brain compared with M group. The MAO activity in white matter of SQ-PC, SC-PC and EL group separately depressed 33.05, 33.64 and 19.73 % in comparison with M group. No significance between SQ-PC and SC-PC was found in these indicators except the SOD activity in hippocampus and white matter. SQ-PC group had a higher SOD activity in hippocampus (103.68U/mg · prot.) and lower in white matter (120.57 U/mg · prot.) than SC-PC group (95.53 U/mg · prot. in hippocampus, 134.49 U/mg · prot. in white matter). PC rich in n-3 PUFA acted more ameliorative effects than that barely contained on the indicators above. Different fatty acids composition of PC all could diminish the cognitive decline and biological damage and protect the brain. EPA and DHA partly enhaced to the advantageous effects.