Skip to Content
Merck
CN
  • Distinct synaptic and neurochemical changes to the granule cell-CA3 projection in Bassoon mutant mice.

Distinct synaptic and neurochemical changes to the granule cell-CA3 projection in Bassoon mutant mice.

Frontiers in synaptic neuroscience (2015-11-12)
Sandra Dieni, Sigrun Nestel, Mirjam Sibbe, Michael Frotscher, Sabine Hellwig
ABSTRACT

Proper synaptic function depends on a finely-tuned balance between events such as protein synthesis and structural organization. In particular, the functional loss of just one synaptic-related protein can have a profound impact on overall neuronal network function. To this end, we used a mutant mouse model harboring a mutated form of the presynaptic scaffolding protein Bassoon (Bsn), which is phenotypically characterized by: (i) spontaneous generalized epileptic seizure activity, representing a chronically-imbalanced neuronal network; and (ii) a dramatic increase in hippocampal brain-derived neurotrophic factor (BDNF) protein concentration, a key player in synaptic plasticity. Detailed morphological and neurochemical analyses revealed that the increased BDNF levels are associated with: (i) modified neuropeptide distribution; (ii) perturbed expression of selected markers of synaptic activation or plasticity; (iii) subtle changes to microglial structure; and (iv) morphological alterations to the mossy fiber (MF) synapse. These findings emphasize the important contribution of Bassoon protein to normal hippocampal function, and further characterize the Bsn-mutant as a useful model for studying the effects of chronic changes to network activity.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Anti-Reelin Antibody, a.a. 164-496 mreelin, clone G10, clone G10, Chemicon®, from mouse