Skip to Content
Merck
CN
All Photos(3)

Key Documents

MAB5364

Sigma-Aldrich

Anti-Reelin Antibody, a.a. 164-496 mreelin, clone G10

clone G10, Chemicon®, from mouse

Synonym(s):

Anti-ETL7, Anti-LIS2, Anti-PRO1598, Anti-RL

Sign Into View Organizational & Contract Pricing


About This Item

UNSPSC Code:
12352203
eCl@ss:
32160702
NACRES:
NA.41

biological source

mouse

Quality Level

antibody form

purified antibody

antibody product type

primary antibodies

clone

G10, monoclonal

species reactivity

rodent, mouse, rat

species reactivity (predicted by homology)

human

manufacturer/tradename

Chemicon®

technique(s)

immunohistochemistry: suitable
western blot: suitable

isotype

IgG1

NCBI accession no.

UniProt accession no.

shipped in

wet ice

target post-translational modification

unmodified

Gene Information

human ... RELN(5649)

General description

The highly layered structure of the cerebral cortex is established through the pattern of neuronal cell migrations. The first step is the creation of the primordial layer, the preplate, consisting of radial glial cells and the earliest generated neurons. Among these neurons are the Cajal-Retzius neurons. In the next step, the preplate splits into a superficial (marginal) zone, where the Cajal-Retzius neurons reside, and a deep subplate wherein the neurons form. Neurons migrating from the subplate form the cortical plate. This migration takes place on the radial glial fibers.



The reeler mutant in mouse displays an abnormal pattern of cell migration throughout the cerebral and cerebellar cortices. The preplate forms normally, and the neurons differentiate at the correct times in the ventricular zone. However, instead of forming the normal "inside-out" arrangement of neurons in the cortical plate, the older neurons are found furthest from the ventricular zone, while the younger neurons do not migrate far at all. The reeler cerebral cortex is inverted from that of the wild type mouse.



The defect of the reeler mice appears to be in the production of an extracellular matrix protein by the Cajal-Retzius cells (D′Arcangelo et al., 1995, Nature 374:719-723.; Ogawa et al., 1995 Neuron 14:899-912.) This 388kDa protein is made by wild-type mice but not by the reeler mutants. It is thought that this Reelin protein is crucial for positioning the migrating neuron within the cortical plate (Figure 1). In the absence of Reelin, the migrating neuron would be "lost," and the cortical plate would be abnormal. We do not yet know the mechanisms by which Reelin informs the cells as to their position, how the cell responds to Reelin, and why the absence of reelin should give an "inverted" plate. However, the identification of the protein encoded by the reeler gene should allow us to begin these studies.

Specificity

Reelin
The antibody shows weak reactivity to reelin from other species.

Immunogen

Epitope: a.a. 164-496 mreelin
Recombinant reelin amino acids 164-496

Application

Detect Reelin using this Anti-Reelin Antibody, a.a. 164-496 mreelin, clone G10 validated for use in IH & WB.
Immunohistochemistry: A previous lot of this antibody was used in IH.

Optimal working dilutions must be determined by the end user.
Research Category
Neuroscience
Research Sub Category
Growth Cones & Axon Guidance

Quality

Evaluated by Western Blot on Rat brain lysates.

Western Blotting Analysis:
1:500 dilution of this antibody detected reelin on 10 μg of Rat brain lysates.

Target description

~388 kDa

Physical form

Format: Purified
Mouse monoclonal IgG1 in buffer containing 0.02 M Phosphate buffer with 0.25 M NaCl and 0.1% sodium azide.
Protein A purified

Storage and Stability

Stable for 1 year at 2-8ºC from date of receipt.

Analysis Note

Control
Mouse liver, kidney, rat brain lysate

Other Notes

Concentration: Please refer to the Certificate of Analysis for the lot-specific concentration.

Legal Information

CHEMICON is a registered trademark of Merck KGaA, Darmstadt, Germany

Disclaimer

Unless otherwise stated in our catalog or other company documentation accompanying the product(s), our products are intended for research use only and are not to be used for any other purpose, which includes but is not limited to, unauthorized commercial uses, in vitro diagnostic uses, ex vivo or in vivo therapeutic uses or any type of consumption or application to humans or animals.

Not finding the right product?  

Try our Product Selector Tool.

Storage Class Code

10 - Combustible liquids

WGK

WGK 2


Certificates of Analysis (COA)

Search for Certificates of Analysis (COA) by entering the products Lot/Batch Number. Lot and Batch Numbers can be found on a product’s label following the words ‘Lot’ or ‘Batch’.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

Assunta Diodato et al.
Nature communications, 7, 12238-12238 (2016-07-19)
The ability to target subclasses of neurons with defined connectivity is crucial for uncovering neural circuit functions. The olfactory (piriform) cortex is thought to generate odour percepts and memories, and odour information encoded in piriform is routed to target brain
Asgeir Kobro-Flatmoen et al.
Neurobiology of disease, 93, 172-183 (2016-05-20)
The onset of Alzheimer's disease (AD) is associated with subtle pathological changes including increased intracellular expression of amyloid-β (Aβ). A structure affected particularly early in the course of AD is the entorhinal cortex, where neuronal death in layer II is
Gülşen Sürmeli et al.
Neuron, 88(5), 1040-1053 (2015-11-27)
Deep layers of the medial entorhinal cortex are considered to relay signals from the hippocampus to other brain structures, but pathways for routing of signals to and from the deep layers are not well established. Delineating these pathways is important
J H Trotter et al.
Neuroscience, 274, 299-307 (2014-06-04)
The secreted glycoprotein reelin plays an indispensable role in neuronal migration during development and in regulating adult synaptic functions. The upstream mechanisms responsible for initiating and regulating the duration and magnitude of reelin signaling are largely unknown. Here we report
Raquel Romay-Tallón et al.
Neural plasticity, 2010, 130429-130429 (2011-02-19)
Reelin is an extracellular matrix protein expressed in several interneuron subtypes in the hippocampus and dentate gyrus. Neuronal nitric oxide synthase (nNOS) is also expressed by interneurons in these areas. We investigated whether reelin and nNOS are co-localized in the

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service