Skip to Content
Merck
CN
All Photos(1)

Key Documents

53334-U

Supelco

Ascentis® Express 90 Å Phenyl-Hexyl (2.7 μm) HPLC Columns

L × I.D. 5 cm × 2.1 mm, HPLC Column

Synonym(s):

Core-shell (SPP) Fused Core Phenyl HPLC column

Sign Into View Organizational & Contract Pricing


About This Item

UNSPSC Code:
41115700
eCl@ss:
32110501
NACRES:
SB.52

Product Name

Ascentis® Express Phenyl-Hexyl, 2.7 μm HPLC Column, 2.7 μm particle size, L × I.D. 5 cm × 2.1 mm

material

stainless steel column

Quality Level

Agency

suitable for USP L11

product line

Ascentis®

feature

endcapped

manufacturer/tradename

Ascentis®

packaging

1 ea of

parameter

≤100 °C temp. range
60 °C temp. range
600 bar max. pressure (9000 psi)

technique(s)

HPLC: suitable
LC/MS: suitable
UHPLC-MS: suitable
UHPLC: suitable

L × I.D.

5 cm × 2.1 mm

surface area

135 m2/g

impurities

<5 ppm metals
<5 ppm metals

matrix

Fused-Core particle platform
superficially porous particle

matrix active group

phenylhexyl phase

particle size

2.7 μm

pore size

90 Å

pH range

2-9

application(s)

food and beverages

separation technique

reversed phase

Looking for similar products? Visit Product Comparison Guide

General description

The Phenyl-Hexyl phase has unique selectivity arising from solute interaction with the aromatic ring and its delocalized electrons. It is complementary (orthogonal) to both C18 and RP-Amide phases because of this unique aromaticity. The Phenyl-Hexyl phase also tend to exhibit good shape selectivity, which may originate from solute multipoint interaction with the planar ring system. More retention and selectivity will often be observed for solutes with aromatic electron-withdrawing groups (fluorine, nitro, etc.) or with a delocalized heterocyclic ring system such as the benzodiazepine compounds.

Application


  • A fully automated and fast method using direct sample injection combined with fused-core column on-line SPE-HPLC for determination of ochratoxin A and citrinin in lager beers: Demonstrates the robustness of the Ascentis® Express Phenyl-Hexyl, 2.7 μm HPLC column in automating the detection of contaminants in beverages. This study showcases the column′s capacity for high throughput analysis, essential for quality control in the food industry, ensuring safety and compliance with regulatory standards (Lhotská et al., 2016).

  • Advantages of core-shell particle columns in Sequential Injection Chromatography for determination of phenolic acids: This research highlights the efficiency of the Ascentis® Express Phenyl-Hexyl column in analyzing complex phenolic compounds, illustrating its superior performance in environmental and pharmaceutical applications. The column′s design enables enhanced separation capabilities, crucial for accurate phenolic profiling in various samples (Chocholouš et al., 2013).

Legal Information

Ascentis is a registered trademark of Merck KGaA, Darmstadt, Germany

Not finding the right product?  

Try our Product Selector Tool.

Storage Class Code

11 - Combustible Solids

WGK

WGK 3

Flash Point(F)

Not applicable

Flash Point(C)

Not applicable


Choose from one of the most recent versions:

Certificates of Analysis (COA)

Lot/Batch Number

Don't see the Right Version?

If you require a particular version, you can look up a specific certificate by the Lot or Batch number.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

  1. Which document(s) contains shelf-life or expiration date information for a given product?

    If available for a given product, the recommended re-test date or the expiration date can be found on the Certificate of Analysis.

  2. How do I get lot-specific information or a Certificate of Analysis?

    The lot specific COA document can be found by entering the lot number above under the "Documents" section.

  3. What is special about Ascentis Express?

    Ascentis Express columns provide a breakthrough in HPLC performance. Based on Fused-Core particle technology, Ascentis Express provides the benefits of sub-2 μm particles but at much lower backpressure.  These benefits include the capability of providing fast HPLC and higher resolution chromatography.  The Fused-Core particle consists of a 1.7 μm solid core and a 0.5 μm porous shell.  A major benefit of the Fused-Core particle is the small diffusion path (0.5 μm) compared to conventional fully porous particles. The shorter diffusion path reduces axial dispersion of solutes and minimizes peak broadening.

  4. Can I use Ascentis Express on any type of HPLC system?

    Ascentis Express HPLC columns are capable of use on standard HPLC systems as well as UHPLC systems.  Columns are packed in high pressure hardware capable of withstanding the pressures used in UHPLC systems.

  5. Can I use Ascentis Express on a UHPLC system?

    Yes.  Ascentis Express columns are packed in a way making them suitable for these ultra high pressure instruments.  In fact, Ascentis Express outperforms sub-2 μm micron columns on many applications since Ascentis Express provides the benefits of sub-2 μm particles but at much lower back pressure.  These benefits include the capability of providing fast HPLC and higher resolution chromatography.  The Fused-Core particle consists of a 1.7 μm solid core and a 0.5 μm porous shell.  A major benefit of the Fused-Core particle is the small diffusion path (0.5 μm) compared to conventional fully porous particles. The shorter diffusion path reduces axial dispersion of solutes and minimizes peak broadening.

  6. How do I find price and availability?

    There are several ways to find pricing and availability for our products. Once you log onto our website, you will find the price and availability displayed on the product detail page. You can contact any of our Customer Sales and Service offices to receive a quote.  USA customers:  1-800-325-3010 or view local office numbers.

  7. What is the Department of Transportation shipping information for this product?

    Transportation information can be found in Section 14 of the product's (M)SDS.To access the shipping information for this material, use the link on the product detail page for the product. 

  8. Is there anything special I need to do to my HPLC system to use Ascentis Express?

    Nothing special is required to use Ascentis Express HPLC columns. To obtain the full benefits of Ascentis Express, one should minimize dispersion or instrument bandwidth in the HPLC system (tubing, detector flow cell) as well as confirm the detector response system is set at a fast level. For more information, request Guidelines for Optimizing Systems for Ascentis Express Columns (T407102)

  9. How can I measure my instrument bandwidth (IBW) and determine what Ascentis® Express HPLC Columns can be used with minimal efficiency loss created by too much internal instrument volume?

    The Guide to Dispersion Measurement has simple instructions on how to measure IBW and can be found at sigma-aldrich.com/express.

  10. Do I need special fittings and tubing to connect Ascentis® Express HPLC Columns?

    While operating pressures may not exceed the 400 bar (6,000 psi) capability of your traditional instruments, sustained pressures of about 200 bar (3,000 psi) will exceed the recommended pressure for conventional PEEK tubing and fittings at the column inlet. We recommend changing to stainless steel fittings in all high pressure locations and have designed special High Performance HPLC Fittings/Interconnects that will stay tight at pressures of 1,000 bar (15,000 psi) or greater, even when elevated column temperatures are employed.

  11. What flow rate should I use with Ascentis® Express HPLC Columns?

    Based on the minimum in the van Deemter curves, higher flows than 5um particle columns are required in order to maximize Ascentis Express column efficiency. The suggested starting point for flow rate for Ascentis Express columns: 1.6 mL/min for 4.6 mm ID;  0.8 mL/min for 3.0 mm ID; and 0.4mL/min for 2.1 mm ID.

  12. Can Ascentis® Express HPLC Columns be used for LC-MS?

    Express Fused-Core particles were designed with LC-MS in mind. Even extremely short column lengths exhibit sufficient plate counts to show high resolving power. The flat van Deemter plots permit resolution to be maintained at very high flow rates to maximize sample throughput. All Ascentis stationary phases have been evaluated for MS compatibility during their development, and the Express phases are no exception. You can expect extremely low column bleed and background while maintaining longest possible column lifetime. A bonus of Ascentis Express columns for high throughput UHPLC and LC-MS is that they are extremely rugged and highly resistant to plugging, a very common failure mode for competitor columns.

  13. What is the pressure rating for Ascentis® Express Phenyl-Hexyl HPLC Columns?

    This Ascentis Express column is stable to operating pressures up to 600 bar (9000 psi).

  14. Can a 100% aqueous mobile phase be used with the Phenyl-Hexyl HPLC column?

    The phenyl-hexyl phase is 100% aqueous compatible.

  15. My question is not addressed here, how can I contact Technical Service for assistance?

    Ask a Scientist here.

C M Chavez-Eng et al.
Journal of chromatography. B, Analytical technologies in the biomedical and life sciences, 1011, 204-214 (2016-01-17)
An ultra-high performance liquid chromatography/tandem mass spectrometry (UPLC-MS/MS) method for the simultaneous determination of (4S,5R)-5-[3,5-bis (trifluoromethyl)phenyl]-3-{[4'-fluoro-5'-isopropyl-2'-methoxy-4-(trifluoromethyl)biphenyl-2-yl] methyl}-4-methyl-1,3-oxazolidin-2-one (anacetrapib, I) and [(13)C5(15)N]-anacetrapib, II in human plasma has been developed to support a clinical study to determine the absolute bioavailability of I.
E Lesellier
Journal of chromatography. A, 1266, 34-42 (2012-11-03)
The recent introduction of new stationary phases for liquid chromatography based on superficially porous particles, called core-shell or fused-core, dramatically improved the separation performances through very high efficiency, due mainly to reduced eddy diffusion. However, few studies have evaluated the
Petr Chocholouš et al.
Talanta, 103, 221-227 (2012-12-04)
Currently, for Sequential Injection Chromatography (SIC), only reversed phase C18 columns have been used for chromatographic separations. This article presents the first use of three different stationary phases: three core-shell particle-packed reversed phase columns in flow systems. The aim of
Ivona Lhotská et al.
Analytical and bioanalytical chemistry, 408(12), 3319-3329 (2016-03-20)
A new fast and sensitive method based on on-line solid-phase extraction on a fused-core precolumn coupled to liquid chromatography with fluorescence detection has been developed for ochratoxin A (OTA) and citrinin (CIT) determination in lager beer samples. Direct injection of
Alex D Batista et al.
Talanta, 133, 142-149 (2014-12-02)
On-line sample pretreatment (clean-up and analyte preconcentration) is for the first time coupled to sequential injection chromatography. The approach combines anion-exchange solid-phase extraction and the highly effective pentafluorophenylpropyl (F5) fused-core particle column for separation of eight sulfonamide antibiotics with similar

Articles

Analyte recovery values from spiked cannabis extracts ranged from 102 to 127% with RSD below 12% for 3 replicates. Excellent recovery values were even observed for Aflatoxins B2 and G2 which were spiked at a low level of 6.1 ppb.

Improve your reversed phase selectivity for polar aromatics and heterocyclic compounds with the Ascentis® Express Phenyl-Hexyl U/HPLC column.

Protocols

Determination of the thyroid hormones T4, T3 and rT3 from plasma using an Ascentis Express RP-Amide cartridge to trap the analytes, and a Phenyl-Hexyl column to resolve them.

LC/MS/MS Analysis of Aflatoxins in Hops on Ascentis® Express 2.7 μm Phenyl-Hexyl after Cleanup Using Supel™ Tox AflaZea SPE

Related Content

Detailed list of mycotoxin analysis products for Food & Beverage manufacturers and testers, ensuring safety standards.

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service