Skip to Content
Merck
CN
All Photos(1)

Documents

53023AST

Supelco

Astec® CLC-D Chiral (5 μm) HPLC Columns

L × I.D. 15 cm × 4.6 mm, HPLC Column

Synonym(s):

Chiral Separation CLC-D Column

Sign Into View Organizational & Contract Pricing


About This Item

UNSPSC Code:
41115700
eCl@ss:
32110501
NACRES:
SB.52

product name

Astec® CLC-D Chiral HPLC Column, 5 μm particle size, L × I.D. 15 cm × 4.6 mm

material

stainless steel column

Quality Level

Agency

suitable for USP L32

product line

Astec®

packaging

pkg of 1 ea

manufacturer/tradename

Astec®

parameter

0-50 °C temperature
172 bar pressure (2500 psi)

technique(s)

HPLC: suitable

L × I.D.

15 cm × 4.6 mm

matrix

fully porous particle

matrix active group

chiral bidentate ligand (D-form), requires 5 mM CuSO4 phase

particle size

5 μm

pore size

100 Å

operating pH

3.5-7

separation technique

chiral

Related Categories

General description

CLC columns use the copper ligand concept described by Davankov to effect enantiomer separation (1). The method uses a small, chiral bidentate ligand attached to the silica surface and a copper sulphate-containing mobile phase. The copper ions coordinate with the chiral selector on the stationary phase and carboxylic acid functional groups on the analytes to form transient diastereomeric complexes in solution. The technique also has the advantage of giving small acids with no UV chromophore a strong 254 nm signal. CLC columns are ideal for analysis of hydroxy acids, like lactic, malic, tartaric and mandelic acids, amino acids, other amines and bi-functional racemates, like amino alcohols. Proline and aspartic acid are particularly suited for low-level detection on the CLC column since the copper complex is detected at 254 nm UV. Both can be resolved on the CLC-D or CLC-L in 5 mM CuSO4 with the usual reversal of elution order from the CLC-D to CLC-L. In theory, any analyte that can complete the coordination with the copper ion can be resolved. Two versions of the column provide elution order reversal. On the CLC-D column, the L enantiomer generally elutes before D, with the exception of tartaric acid. The reverse is true on the CLC-L column where D elutes before L.

Features:
  • Separates α-hydroxy carboxylic acids, amino acids and other α-bifunctional compounds
  • High selectivity with simple mobile phases
  • Copper complex gives strong UV 254 nm signal
  • Simple reversal of elution order, CLC-L vs. CLC-D
  • Excellent reproducibility

(1) Davankov, V. A.; Rogozhin, S. V. Ligand chromatography as a novel method for the investigation of mixed complexes: Stereoselective effects in a-amino acid copper(II) complexes. J. Chrom. A. 1971, 60, 284-312.

Legal Information

Astec is a registered trademark of Merck KGaA, Darmstadt, Germany

Choose from one of the most recent versions:

Certificates of Analysis (COA)

Lot/Batch Number

Don't see the Right Version?

If you require a particular version, you can look up a specific certificate by the Lot or Batch number.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

Badal C Saha et al.
Biotechnology and bioengineering, 82(7), 864-871 (2003-04-18)
Lactobacillus intermedius B-3693 was selected as a good producer of mannitol from fructose after screening 72 bacterial strains. The bacterium produced mannitol, lactic acid, and acetic acid from fructose in pH-controlled batch fermentation. Typical yields of mannitol, lactic acid, and
Enantiomeric impurities in chiral catalysts, auxiliaries, synthons and resolving agents. Part 2
Armstrong, Daniel W., et al.
Tetrahedron Asymmetry, 10 (1), 37-60 (1999)

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service