Skip to Content
Merck
CN

48567

Anthracene

analytical standard

Synonym(s):

Anthraxcene, Paranaphthalene

Sign In to View Organizational & Contract Pricing.

Select a Size


About This Item

Empirical Formula (Hill Notation):
C14H10
CAS Number:
Molecular Weight:
178.23
EC Number:
204-371-1
PubChem Substance ID:
UNSPSC Code:
12352200
Beilstein/REAXYS Number:
1905429
Colour Index Number:
10790
MDL number:
NACRES:
NA.24
Technical Service
Need help? Our team of experienced scientists is here for you.
Let Us Assist
Technical Service
Need help? Our team of experienced scientists is here for you.
Let Us Assist

Product Name

Anthracene, analytical standard

solubility

supercritical carbon dioxide: soluble
alcohols: soluble
benzene: soluble
chloroform: soluble
hydronaphthalenes: soluble

InChI

1S/C14H10/c1-2-6-12-10-14-8-4-3-7-13(14)9-11(12)5-1/h1-10H

InChI key

MWPLVEDNUUSJAV-UHFFFAOYSA-N

SMILES string

c1ccc2cc3ccccc3cc2c1

grade

analytical standard

vapor density

6.15 (vs air)

vapor pressure

1 mmHg ( 145 °C)

CofA

current certificate can be downloaded

autoignition temp.

1004 °F

packaging

ampule of 5000 mg

technique(s)

HPLC: suitable
gas chromatography (GC): suitable

bp

340 °C (lit.)

mp

210-215 °C (lit.)

application(s)

environmental

format

neat

storage temp.

2-30°C

Quality Level

Gene Information

human ... CYP1A2(1544)

Looking for similar products? Visit Product Comparison Guide

Application

Anthracene has been shown to be soluble in a variety of binary and ternary mixtures of cyclohexanone, ethyl acetate, and methanol .
Anthracene may be used as an analytical reference standard for the determination of the analyte in aqueous solution by synchronous fluorimetry.
Refer to the product′s Certificate of Analysis for more information on a suitable instrument technique. Contact Technical Service for further support.

General description

Anthracene is a polycyclic aromatic hydrocarbon often formed by incomplete combustion of organic materials.
This compound is listed in the SVHC (Substances of very high concern) candidate list of ECHA (European Chemicals Agency)

pictograms

Exclamation markEnvironment

signalword

Warning

hcodes

Hazard Classifications

Aquatic Acute 1 - Aquatic Chronic 1 - Eye Irrit. 2

Storage Class

11 - Combustible Solids

wgk

WGK 2

flash_point_f

249.8 °F - closed cup

flash_point_c

121.0 °C - closed cup

ppe

dust mask type N95 (US), Eyeshields, Gloves

Regulatory Information

危险化学品
This item has

Choose from one of the most recent versions:

Certificates of Analysis (COA)

Lot/Batch Number

Don't see the Right Version?

If you require a particular version, you can look up a specific certificate by the Lot or Batch number.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

Simultaneous determination of dissolved anthracene and pyrene in aqueous solution by synchronous fluorimetry.
Cai ZQ, et al.
Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy, 69(1), 130-133 (2008)
Determination of polycyclic aromatic hydrocarbons in water samples using high-performance liquid chromatography with amperometric detection.
Nirmaier HP, et al.
Journal of Chromatography A, 730(1-2), 169-175 (1996)
Alina P Sergeeva et al.
Journal of the American Chemical Society, 134(43), 18065-18073 (2012-10-04)
Clusters of boron atoms exhibit intriguing size-dependent structures and chemical bonding that are different from bulk boron and may lead to new boron-based nanostructures. We report a combined photoelectron spectroscopic and ab initio study of the 22- and 23-atom boron
Dabin Shi et al.
Dalton transactions (Cambridge, England : 2003), 42(2), 484-491 (2012-10-20)
A novel three-dimensional (3D) porous metal-organic framework, {[Cd(L)(H(2)O)]·3H(2)O}(∞) (1) (L-H(2) = 4,4'-(9,10-anthracenediyl)dibenzoic acid), was synthesized. 1 has a 3D framework formed by L connectors and the infinite {Cd(O(2)CR)(2)}(∞) secondary building units (SBUs). Compound 1 was characterized by IR spectroscopy, thermogravimetry
Hyunjung Lee et al.
Inorganic chemistry, 51(20), 10904-10915 (2012-09-26)
The tendency of a Hg(II) ion to strongly quench fluorescence of potential fluorescent sensors is explored. Fluorescence measurements show the expected order of the chelation-enhanced fluorescence (CHEF) effect of Zn(II) > Cd(II) > Hg(II) ~ Cu(II), which is interpreted as

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service