Skip to Content
Merck
CN

11048-U

Carboxen® Carbon Adsorbent

matrix Carboxen® 569, 20-45 mesh, bottle of 500 g

Synonym(s):

carbon adsorbent, CMS, 60-80 mesh

Sign In to View Organizational & Contract Pricing.

Select a Size


About This Item

UNSPSC Code:
23201100
EC Number:
231-153-3
NACRES:
SB.54
Technical Service
Need help? Our team of experienced scientists is here for you.
Let Us Assist
Technical Service
Need help? Our team of experienced scientists is here for you.
Let Us Assist

Product Name

Carboxen® Adsorbent, matrix Carboxen® 569, 20-45 mesh, bottle of 500 g

product line

Carboxen®

form

powder

packaging

bottle of 500 g

technique(s)

LPLC: suitable

surface area

~485 m2/g

matrix

Carboxen® 569

matrix active group

carbon

particle size

20-45 mesh

pore size

~0.10 cm3/g macroporosity
~0.14 cm3/g mesoporosity
~0.20 cm3/g microporosity
~5-8 Å pore diameter

density

~0.61 g/mL (free fall density)

separation technique

reversed phase

Quality Level

Looking for similar products? Visit Product Comparison Guide

Application

Carboxen® 569 was used for trapping a range of replacement chlorofluorocarbons varying in boiling point from -48.4 to -9.8°C which is highly advantageous for analysis of trace gases in atmosphere.

Features and Benefits

Features and Benefits:

  • Spherical
  • Hard (ball pan hardness >98%)
  • Stable up to 400°C
  • High purity
  • Easy to pack
  • Stable over entire pH range
  • Do not create backpressure
  • High osmotic shock stability
  • Tapered pore sizing (from macro- to meso- to micro-)

General description

Carboxen® Adsorbent is ideally used for solid-phase microextraction (SPME). It is highly efficient in extraction of small polar molecules from aqueous solution.
Carboxens are a highly engineered synthetic carbon adsorbent engineered from polymeric precursors. These particles will not plastically deform like resins or generate fines like activated carbon. These materials are shipped and stored dried. These derivatized resins bring value to a wide range of purification applications for removing both small and large molecule impurities. They find use in both gas and liquid phase purifications. Some examples include removal of homogenous catalysts from active pharmaceutical ingredients (API)s, high-risk impurities in biochemical purifications such as host cell proteins from mAbs, removal of toxic heavy metals, purification of chlorinated molecules, and removal of extractables and leachables. Tapered pores result in increased thermodynamic and kinetic properties for both adsorption and desorption. The Carboxens vary in the relative percentage of pore structures (micro, meso, and macro), surface area, and surface pH.

Other Notes

For more information, please visit: specialty Carbon Adsorbents

Legal Information

Carboxen is a registered trademark of Merck KGaA, Darmstadt, Germany

Storage Class

11 - Combustible Solids

wgk

nwg

flash_point_f

Not applicable

flash_point_c

Not applicable

ppe

Eyeshields, Gloves, type N95 (US)

Regulatory Information

新产品
This item has

Choose from one of the most recent versions:

Certificates of Analysis (COA)

Lot/Batch Number

It looks like we've run into a problem, but you can still download Certificates of Analysis from our Documents section.

If you need assistance, please contact Customer Support

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

Evaluation of Carboxen carbon molecular sieves for trapping replacement chlorofluorocarbons.
O'Doherty SJ, et al.
Journal of Chromatography A, 630 (1), 265-274 (1993)
Filippo Maggi et al.
Chemistry & biodiversity, 8(1), 95-114 (2011-01-25)
Headspace solid-phase microextraction (HS-SPME) coupled with GC/FID and GC/MS was applied for the first time in the analysis of the volatile fraction of an Ephedra species. Notably, six Italian populations (Marche, Abruzzo, and Sardinia) of Ephedra nebrodensis subsp. nebrodensis, covering
Jacek A Koziel et al.
Journal of the Air & Waste Management Association (1995), 55(8), 1147-1157 (2005-09-29)
Odorous gases associated with livestock operations are complex mixtures of hundreds if not thousands of compounds. Research is needed to know how best to sample and analyze these compounds. The main objective of this research was to compare recoveries of
Diana Poli et al.
Chemical research in toxicology, 17(1), 104-109 (2004-01-20)
A solid phase microextraction (SPME) gas chromatography/mass spectrometry (GC/MS) method was developed to assess actual doses of highly reactive organic compounds like styrene oxide (SO) in exposed cell cultures. Using SPME, we set up a method to measure accurately extracellular
Frank Sporkert et al.
Journal of chromatography. B, Analytical technologies in the biomedical and life sciences, 772(1), 45-51 (2002-05-23)
A new and in part automated headspace solid-phase microextraction method for quantitative determination of the highly toxic rodenticide fluoroacetic acid (FAA) in serum and other biological samples has been developed. FAA and deuterated acetic acid (internal standard) were extracted from

Articles

Synthetic CMS carbons offer tailored adsorbents for specific applications.

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service