Skip to Content
Merck
CN

SML2603

GNE-9278

≥98% (HPLC)

Synonym(s):

4-Cyclohexyl-N-(7-hydroxy-5-methyl-2-propyl[1,2,4]triazolo[1,5-a]pyrimidin-6-yl)-benzenesulfonamide, GNE 9278, GNE9278

Sign In to View Organizational & Contract Pricing.

Select a Size


About This Item

Empirical Formula (Hill Notation):
C21H27N5O3S
CAS Number:
Molecular Weight:
429.54
UNSPSC Code:
12352200
NACRES:
NA.77
Technical Service
Need help? Our team of experienced scientists is here for you.
Let Us Assist
Technical Service
Need help? Our team of experienced scientists is here for you.
Let Us Assist

SMILES string

CC1=NC2=NC(CCC)=NN2C(O)=C1NS(C3=CC=C(C4CCCCC4)C=C3)(=O)=O

assay

≥98% (HPLC)

form

powder

color

white to beige

solubility

DMSO: 2 mg/mL, clear

storage temp.

2-8°C

Biochem/physiol Actions

GNE-9278 is a selective NMDAR, but not AMPAR, positive allosteric modulator (PAM fold enhancement Emax/EC50 = 5.5/0.74 μM/2A, 8.4/3.07 μM/2B,10.2/0.47 μM/2C, 7.9/0.32 μM/2D of gly EC50 (50 μM)-induced Ca++ influx in HEK293 co-expressing GluN1 & respective GluN2 subunit; Emax/EC50 = 4.6/3.2 μM/2A,12.4/15.7 μM/2B, 9.1/6.6 μM/2C, 14.9/6.7 μM/2D of 100 μM Glu-induced current in the presence of 50 μM gly using respective GluN1/GluN2 oocytes). GNE-9278 targets transmembrane domain (TMD) extracellular surface of agonist-bound NMDARs, stabilizing NMDARs in an activated state by slowing L-L-glu & gly off-rate.
Selective NMDAR, but not AMPAR, positive allosteric modulator (PAM) that targets TMD extracellular surface of ligand-bound NMDARs and slows L-Glu/Gly dissociation.

Storage Class

11 - Combustible Solids

wgk

WGK 3

flash_point_f

Not applicable

flash_point_c

Not applicable

Regulatory Information

新产品
This item has

Choose from one of the most recent versions:

Certificates of Analysis (COA)

Lot/Batch Number

Don't see the Right Version?

If you require a particular version, you can look up a specific certificate by the Lot or Batch number.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

Tzu-Ming Wang et al.
Neuropharmacology, 121, 204-218 (2017-05-02)
Ionotropic glutamate receptors (iGluRs) mediate fast excitatory neurotransmission and are key nervous system drug targets. While diverse pharmacological tools have yielded insight into iGluR extracellular domain function, less is known about molecular mechanisms underlying the ion conduction gating process within
Erica S Burnell et al.
Journal of medicinal chemistry, 62(1), 3-23 (2018-02-16)
Excitatory activity in the CNS is predominately mediated by l-glutamate through several families of l-glutamate neurotransmitter receptors. Of these, the N-methyl-d-aspartate receptor (NMDAR) family has many critical roles in CNS function and in various neuropathological and psychiatric conditions. Until recently
Ioana Neagoe et al.
Stem cell research, 28, 105-114 (2018-02-18)
Abnormal signaling pathways mediated by N-methyl-d-aspartate receptors (NMDARs) have been implicated in the pathogenesis of various CNS disorders and have been long considered as promising points of therapeutic intervention. However, few efforts have been previously described concerning evaluation of therapeutic

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service