Skip to Content
Merck
CN
All Photos(1)

Documents

SML2200

Sigma-Aldrich

Octyl-(R)-2HG

≥98% (HPLC), film, α-KG-dependent dioxygenases prolyl hydroxylases inhibitor

Synonym(s):

(2R)-2-Hydroxyglutarate octyl ester, (2R)-Octyl-α-hydroxyglutarate, 1-Octyl-D-2-hydroxyglutarate, 1-octyl ester, 2R-Hydroxy-pentanedioic acid, Octyl-2HG, Octyl-D-2HG, R-2HG octyl ester

Sign Into View Organizational & Contract Pricing


About This Item

Empirical Formula (Hill Notation):
C13H24O5
CAS Number:
Molecular Weight:
260.33
MDL number:
UNSPSC Code:
12352200
NACRES:
NA.77

product name

Octyl-(R)-2HG, ≥98% (HPLC)

Assay

≥98% (HPLC)

form

film

storage condition

desiccated

color

colorless

solubility

DMSO: 2 mg/mL, clear

storage temp.

−20°C

Application

Octyl-(R)-2 hydroxyglutarate (HG) has been used as a membrane permeamble oncometabolite in gliblostoma cells to test its effects on NANOG transcription factor expression. It has also been used as a competitive inhibitor of the enzyme α-ketoglutarate (α-KG)-dependent deoxygenase.

Biochem/physiol Actions

Octyl-(R)-2HG (Octyl-D-2HG) is a membrane-permeant precursor form of the oncometabolite D-2-hydroxyglutarate (D-2HG) produced by tumor cells due to mutations in the NADP+-dependent isocitrate dehydrogenase genes IDH1 and IDH2. D-2HG inhibits multiple α-ketoglutarate/α-KG-dependent dioxygenases by competing against α-KG binding. Cellular D-2HG delivery by Octyl-(R)-2HG treatment (1-50 mM) is shown to suppress demethylase activity (~148% H3K9me2 and ~310% H3K79me2 upregulation; 50 mM in U-87MG) as well as increase HIF-1α and decrease endostatin levels as a result of inhibiting α-KG-dependent dioxygenases prolyl hydroxylases (PHDs) and collagen prolyl-4-hydroxylase (C-P4H), respectively.

WGK

WGK 3

Flash Point(F)

Not applicable

Flash Point(C)

Not applicable


Certificates of Analysis (COA)

Search for Certificates of Analysis (COA) by entering the products Lot/Batch Number. Lot and Batch Numbers can be found on a product’s label following the words ‘Lot’ or ‘Batch’.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

alpha-Ketoglutarate-Activated NF-$\kappa$B Signaling Promotes Compensatory Glucose Uptake and Brain Tumor Development
Wang X, et al.
Molecular Cell, 76(1), 148-162 (2019)
Zachary J Reitman et al.
The Journal of biological chemistry, 289(34), 23318-23328 (2014-07-06)
Mutations in the cytosolic NADP(+)-dependent isocitrate dehydrogenase (IDH1) occur in several types of cancer, and altered cellular metabolism associated with IDH1 mutations presents unique therapeutic opportunities. By altering IDH1, these mutations target a critical step in reductive glutamine metabolism, the
Jing-Yi Chen et al.
Scientific reports, 6, 32428-32428 (2016-09-01)
Mutations of isocitrate dehydrogenase 1 (IDH1) and IDH2 in acute myeloid leukemia (AML) cells produce the oncometabolite R-2-hydroxyglutarate (R-2HG) to induce epigenetic alteration and block hematopoietic differentiation. However, the effect of R-2HG released by IDH-mutated AML cells on the bone
Parker L Sulkowski et al.
Science translational medicine, 9(375) (2017-02-06)
2-Hydroxyglutarate (2HG) exists as two enantiomers, (R)-2HG and (S)-2HG, and both are implicated in tumor progression via their inhibitory effects on α-ketoglutarate (αKG)-dependent dioxygenases. The former is an oncometabolite that is induced by the neomorphic activity conferred by isocitrate dehydrogenase
IDH1R132H Causes Resistance to HDAC Inhibitors by Increasing NANOG in Glioblastoma Cells
Kim G H, et al.
International Journal of Molecular Sciences, 20(11), 2679-2679 (2019)

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service