biological source
bacterial (Flavobacterium heparinum)
Quality Level
conjugate
conjugate (Glucosaminoglycan)
form
lyophilized powder
specific activity
≥200 units/mg protein
concentration
≥200 unit/mg protein (enzyme + BSA)
shipped in
dry ice
storage temp.
−20°C
General description
Heparinase is an inducible, non-extracellular heparin-degrading enzyme. Three types of heparinises are produced by Flavobacterium heparinum and contains specific sequences of heparin.
Application
Heparinase I and III Blend from Flavobacterium heparinum has been used in:
- the digestion of heparan sulfate from ovine vitreous
- human embryonic kidney cells
- glycosaminoglycans from arterial tissues
- P0 retinae digestion
Biochem/physiol Actions
Heparin-degrading lyase that recognizes heparin sulfate proteoglycan as its primary substrate.
Heparinase I and III plays vital role in various biological processes: modulate cell-growth factor interactions, cell-lipoprotein interactions, neovascularization. It cleaves highly sulphated polysaccharide chains in presence of 2-O-sulfated α-L-idopyranosyluronic acid and β-D-glucopyranosyluronic acid residues of polysaccharides.
Packaging
Sold on the basis of Heparinase I units
Other Notes
Enzyme Commission Numbers: 4.2.2.7 Hep I and 4.2.2.8 Hep III
One unit will form 0.1 micromole of unsaturated uronic acid per hour at 7.5 at 25 degrees C using Heparin, Sodium as substrate for heparinase I.
One unit will form 0.1 micromole of unsaturated uronic acid per hour at 7.5 at 25 degrees C using bovine kidney Heparan, Sulfate as substrate for heparinase III.
One unit will form 0.1 μmole of unsaturated uronic acid per hr at pH 7.5 at 25 °C. One International Unit (I.U.) is equivalent to approx. 600 Sigma units. Package sizes are sold in Sigma units.
One unit will form 0.1 micromole of unsaturated uronic acid per hour at 7.5 at 25 degrees C using bovine kidney Heparan, Sulfate as substrate for heparinase III.
One unit will form 0.1 μmole of unsaturated uronic acid per hr at pH 7.5 at 25 °C. One International Unit (I.U.) is equivalent to approx. 600 Sigma units. Package sizes are sold in Sigma units.
Storage Class Code
13 - Non Combustible Solids
WGK
WGK 3
Flash Point(F)
Not applicable
Flash Point(C)
Not applicable
Regulatory Information
含少量动物源组分生物产品
常规特殊物品
This item has
Choose from one of the most recent versions:
Already Own This Product?
Find documentation for the products that you have recently purchased in the Document Library.
Farizeh Aalam et al.
PLoS pathogens, 16(10), e1008968-e1008968 (2020-10-20)
Despite 25 years of research, the basic virology of Kaposi Sarcoma Herpesviruses (KSHV) in B lymphocytes remains poorly understood. This study seeks to fill critical gaps in our understanding by characterizing the B lymphocyte lineage-specific tropism of KSHV. Here, we
Glycosaminoglycans contribute to extracellular matrix fiber recruitment and arterial wall mechanics
Mattson JM, et al.
Biomechanics and Modeling in Mechanobiology, 16(1), 213-225 (2017)
R Sasisekharan et al.
Proceedings of the National Academy of Sciences of the United States of America, 91(4), 1524-1528 (1994-02-15)
Neovascularization is associated with the regulation of tissue development, wound healing, and tumor metastasis. A number of studies have focused on the role of heparin-like molecules in neovascularization; however, little is known about the role of heparin-degrading enzymes in neovascularization.
IL-2 inducible kinase ITK is critical for HIV-1 infection of Jurkat T-cells
Hain A, et al.
Scientific reports, 8(1), 3217-3217 (2018)
Diffusion regulation in the vitreous humor
Kasdorf B, et al.
Biophysical Journal, 109(10), 2171-2181 (2015)
Articles
Uncover more about glycosaminoglycans and proteoglycans including the structure of glycosaminoglycans (GAGs), the different types of GAGs, and their functions.
Related Content
Instructions
Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.
Contact Technical Service