Sign In to View Organizational & Contract Pricing.
Select a Size
About This Item
Conjugate:
unconjugated
Clone:
225, monoclonal
Application:
IP
Citations:
16
biological source
mouse
conjugate
unconjugated
antibody form
purified immunoglobulin
antibody product type
primary antibodies
clone
225, monoclonal
form
buffered aqueous solution
species reactivity
human
concentration
~1.5 mg/mL
technique(s)
immunoprecipitation (IP): 4-8 μg using cell lysate of A431 cells
isotype
IgG1
UniProt accession no.
application(s)
research pathology
shipped in
dry ice
storage temp.
−20°C
target post-translational modification
unmodified
Quality Level
Gene Information
human ... EGFR(1956)
General description
Monoclonal Anti-EGFR (mouse IgG1 isotype) is derived from the hybridoma 225 produced by the fusion of mouse myeloma cells (NS-1-503 cells) and splenocytes from BALB/c mice immunized with partially purified EGF receptors from A-431 cells. The receptor for epidermal growth factor (EGF) is an integral cell membrane glycoprotein of 170 kDa, which spans the membranes of a wide range of normal and malignant epithelial cells. The EGF receptor has an intracellular domain that exhibits tyrosine kinase activity.
Immunogen
partially purified EGF receptors from human A-431 cells.
Application
Monoclonal Anti-EGF Receptor antibody has been used in antibody-nanoparticle conjugation.
Monoclonal Anti-EGF Receptor antibody is suitable for use in immunoprecipitation (4-8 μg using cell lysate of A431 cells).
Biochem/physiol Actions
EGFR (epidermal growth factor receptors) protein tyrosine kinase is activated when EGF binds the extracellular binding domain. The first detectable response is the autophosphorylation of the C-terminal tyrosine followed by phosphorylation of other endogenous substrates.
EGFR is a tyrosine kinase receptor that regulates cellular several functions such as growth, blood vessel formation, metastasis and invasion. Alterations in EGFR expression have been associated with a wide range of cancers. Thus, drugs that target EGFR signaling have important therapeutic applications in cancer .
Physical form
0.2 μm filtered solution in 0.01 M phosphate buffered saline, pH 7.4.
Legal Information
This product is for in vitro research use only. It is not to be used for commercial purposes. Use of this product to produce products for sale or for diagnostic, therapeutic or drug discovery purposes is prohibited. In order to obtain a license to use this product for commercial purposes, contact The Regents of the University of California.
Disclaimer
Unless otherwise stated in our catalog or other company documentation accompanying the product(s), our products are intended for research use only and are not to be used for any other purpose, which includes but is not limited to, unauthorized commercial uses, in vitro diagnostic uses, ex vivo or in vivo therapeutic uses or any type of consumption or application to humans or animals.
Not finding the right product?
Try our Product Selector Tool.
Storage Class
10 - Combustible liquids
flash_point_f
Not applicable
flash_point_c
Not applicable
Regulatory Information
低风险生物材料
常规特殊物品
This item has
Choose from one of the most recent versions:
Already Own This Product?
Find documentation for the products that you have recently purchased in the Document Library.
Will J Eldridge et al.
Biomedical optics express, 5(8), 2517-2525 (2014-08-20)
We present a fast, wide-field holography system for detecting photothermally excited gold nanospheres with combined quantitative phase imaging. An interferometric photothermal optical lock-in approach (POLI) is shown to improve SNR for detecting nanoparticles (NPs) on multiple substrates, including a monolayer
Nicole E Willmarth et al.
The Journal of biological chemistry, 281(49), 37728-37737 (2006-10-13)
Amphiregulin (AR) autocrine loops have been associated with several types of cancer. We demonstrate that SUM149 breast cancer cells have a self-sustaining AR autocrine loop. SUM149 cells are epidermal growth factor (EGF)-independent for growth, and they overexpress AR mRNA, AR
Molecular imaging of epidermal growth factor receptor in live cells with refractive index sensitivity using dark-field microspectroscopy and immunotargeted nanoparticles
Curry A C, et al.
Journal of Biomedical Optics, 13(1), 014022-014022 (2008)
Molecular imaging and quantitative measurement of epidermal growth factor receptor expression in live cancer cells using immunolabeled gold nanoparticles
Crow M J, et al.
American Journal of Respiratory Cell and Molecular Biology, 192(4), 1021-1028 (2009)
Shinji Kuroda et al.
International journal of nanomedicine, 9, 3825-3839 (2014-08-22)
We have previously demonstrated the epidermal growth factor receptor (EGFR)-targeted hybrid plasmonic magnetic nanoparticles (225-NP) produce a therapeutic effect in human lung cancer cell lines in vitro. In the present study, we investigated the molecular mechanism of 225-NP-mediated antitumor activity
Related Content
Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.
Contact Technical Service