Skip to Content
Merck
CN
All Photos(2)

Key Documents

C3511

Sigma-Aldrich

Collagen from calf skin

Bornstein and Traub Type I (Sigma Type III), solid

Sign Into View Organizational & Contract Pricing


About This Item

CAS Number:
EC Number:
MDL number:
UNSPSC Code:
12352202

biological source

bovine (calf) skin

form

solid

technique(s)

cell culture | mammalian: suitable

solubility

aqueous acid: soluble

suitability

suitable for substrate for collagenase

UniProt accession no.

storage temp.

2-8°C

Gene Information

bovine ... COL1A1(282187)

Looking for similar products? Visit Product Comparison Guide

Application

This product is intended to produce thin layer coatings on tissue culture plates to facilitate attachment of anchorage-dependent cells, recommended for use at 6-10 μg/cm2. It is NOT intended for production of 3-D gels. Type I collagen is often used in cell culture as an attachment substratum with myoblasts, spinal ganglia, hepatocytes, embryonic lung, heart explants, fibroblasts, endothelial cells, and islet cells have all been cultured successfully on films or gels of type I collagen. Collagen type I may also be used in research of Idiopathic pulmonary fibrosis (IPF), studies on the effect of ER stress IPF on lung fibroblasts. Collagen in acidic solution can produce three dimensional scaffolding with use in bioengineering and cell culture applications.

Biochem/physiol Actions

Type I collagen is a component of skin, bone, tendon, and other fibrous connective tissues.

Components

All collagen molecules are composed of three polypeptide chains arranged in a triple helical conformation, with a primary structure that is mostly a repeating motif with glycine in every third position and proline or 4-hydroxyproline frequently preceding the glycine residue. Type I collagen differs from other collagens by its low lysine hydroxylation and low carbohydrate composition.

Preparation Note

Prepared by a modification of the method of Gallop, P.M., and Seifter, S., Meth. Enzymol., VI, 635 (1963).

Other Notes

Collagen is classified into a number of structurally and genetically distinct types. We use the nomenclature proposed by Bornstein and Traub. Do not confuse Sigma type designations with recognized collagen classification types.

Storage Class Code

11 - Combustible Solids

WGK

WGK 1

Flash Point(F)

Not applicable

Flash Point(C)

Not applicable

Personal Protective Equipment

dust mask type N95 (US), Eyeshields, Gloves

Choose from one of the most recent versions:

Certificates of Analysis (COA)

Lot/Batch Number

Don't see the Right Version?

If you require a particular version, you can look up a specific certificate by the Lot or Batch number.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

K Bittner et al.
The Biochemical journal, 314 ( Pt 1), 159-166 (1996-02-15)
The small dermatan sulphate protein decorin interacts via its core protein with fibrillar collagens, and its glycosaminoglycan chains were proposed to be capable of self-association. It was therefore of interest to study the role of decorin in the contraction of
In vitro and in vivo models for evaluation of GDEPT: quantifying bystander killing in cell cultures and tumors.
William R Wilson et al.
Methods in molecular medicine, 90, 403-431 (2003-12-06)
Qiyin Fang et al.
The Review of scientific instruments, 75(1), 151-162 (2004-01-01)
We report the design and development of a compact optical fiber-based apparatus for in situ time-resolved laser-induced fluorescence spectroscopy (tr-LIFS) of biological systems. The apparatus is modular, optically robust, and compatible with the clinical environment. It incorporates a dual output
S Teixeira et al.
Journal of biomedical materials research. Part A, 95(1), 1-8 (2010-08-27)
This study concerns the preparation and in vitro characterization of functionalized hydroxyapatite (HA) porous scaffolds, which are intended to be used as drug-delivery systems and bone-regeneration matrices. Hydroxyapatite scaffolds were prepared using the polymer replication method, and, after being submitted
Zhongcheng Gong et al.
Biomedical materials (Bristol, England), 5(5), 055005-055005 (2010-09-10)
The objective was to investigate synovium-derived stromal cells (SDSCs) coupled with chitosan/collagen type I (CS/COL-I) scaffolds for cartilage engineering. CS/COL-I scaffolds were fabricated through freeze-drying and cross-linked by 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide. SDSCs were isolated from synovium and cultured onto CS/COL-I scaffolds, constructs

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service