Skip to Content
Merck
CN
All Photos(1)

Key Documents

Safety Information

94716

Sigma-Aldrich

Abberior® STAR 470SXP, NHS ester

for STED application

Sign Into View Organizational & Contract Pricing


About This Item

UNSPSC Code:
12352200

Quality Level

form

solid

mol wt

Mw 691.5 g/mol

fluorescence

λex 470 nm; λem 610 nm±10 nm in PBS

storage temp.

−20°C

Suitability

Designed and tested for fluorescent super-resolution microscopy

Legal Information

abberior is a registered trademark of Abberior GmbH

Storage Class Code

13 - Non Combustible Solids

WGK

WGK 3

Flash Point(F)

Not applicable

Flash Point(C)

Not applicable

Regulatory Information

新产品

Choose from one of the most recent versions:

Certificates of Analysis (COA)

Lot/Batch Number

Don't see the Right Version?

If you require a particular version, you can look up a specific certificate by the Lot or Batch number.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

Novel red fluorophores with superior performance in STED microscopy.
Wurm, C. A., et al.
Optical Nanoscopy, 1:7 (2012)
S W Hell et al.
Optics letters, 19(11), 780-782 (1994-06-01)
We propose a new type of scanning fluorescence microscope capable of resolving 35 nm in the far field. We overcome the diffraction resolution limit by employing stimulated emission to inhibit the fluorescence process in the outer regions of the excitation
Marcus Dyba et al.
Nature biotechnology, 21(11), 1303-1304 (2003-10-21)
We report immunofluorescence imaging with a spatial resolution well beyond the diffraction limit. An axial resolution of approximately 50 nm, corresponding to 1/16 of the irradiation wavelength of 793 nm, is achieved by stimulated emission depletion through opposing lenses. We
Beitraege zur Theorie des Mikroskops und der mikroskopischen Wahrnehmung.
Abbe, E.
Archiv fur Mikroskopische Anatomie, 9, 413-420 (1873)
Volker Westphal et al.
Physical review letters, 94(14), 143903-143903 (2005-05-21)
Utilizing single fluorescent molecules as probes, we prove the ability of a far-field microscope to attain spatial resolution down to 16 nm in the focal plane, corresponding to about 1/50 of the employed wavelength. The optical bandwidth expansion by nearly

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service