Skip to Content
Merck
CN

56796

Micro particles based on silicon dioxide

size: 0.5 μm

Synonym(s):

Beads based on silicon dioxide, microsize, Silicon dioxide beads

Sign In to View Organizational & Contract Pricing.

Select a Size


About This Item

NACRES:
NA.25
PubChem Substance ID:
UNSPSC Code:
12352119
MDL number:
Technical Service
Need help? Our team of experienced scientists is here for you.
Let Us Assist
Technical Service
Need help? Our team of experienced scientists is here for you.
Let Us Assist

Product Name

Micro particles based on silicon dioxide, size: 0.5 μm

InChI

1S/O2Si/c1-3-2

SMILES string

O=[Si]=O

InChI key

VYPSYNLAJGMNEJ-UHFFFAOYSA-N

grade

analytical standard

form

aqueous suspension

concentration

5% (solids)

particle size

0.5 μm

Mw/Mn

0.15

application(s)

glass & ceramic
industrial qc
pharmaceutical

format

neat

storage temp.

2-8°C

Quality Level

Looking for similar products? Visit Product Comparison Guide

Application

Silicon dioxide beads, 0.5 μm have a wide range of uses from use as a flow agent to electrical and medical applications.
Used to qualify, validate and monitor particle sizers and surface scanning equipment.
Also used to fabricate silicon-based nano-electro-mechanical systems (NEMS) for mass sensing application.

Features and Benefits

  • suitable for routine instrument calibration checks, testing and corrections
  • available in 5 and 10 mL pack sizes as neat samples

General description

Silicon dioxide-based microbeads (size: 0.5 μm) are ideal for profiling particle size distribution (PSD) of a particle system.

Storage Class

10 - Combustible liquids

wgk

WGK 2

flash_point_f

Not applicable

flash_point_c

Not applicable

ppe

Eyeshields, Gloves


Choose from one of the most recent versions:

Certificates of Analysis (COA)

Lot/Batch Number

Don't see the Right Version?

If you require a particular version, you can look up a specific certificate by the Lot or Batch number.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

Reaching silicon-based NEMS performances with 3D printed nanomechanical resonators
Stassi S, et al.
Nature Communications, 12(1), 1-9 (2021)
Jason S Kim et al.
Analytical and bioanalytical chemistry, 398(6), 2373-2382 (2010-06-08)
Micron-sized particles have primarily been used in microfabricated flow cytometers for calibration purposes and proof-of-concept experiments. With increasing frequency, microparticles are serving as a platform for assays measured in these small analytical devices. Light scattering has been used to measure
Surachate Kalasin et al.
Langmuir : the ACS journal of surfaces and colloids, 26(4), 2317-2324 (2010-02-10)
This paper explores the particle-level dynamics involved in the capture of gently flowing microparticles on adhesive planar surfaces, governed by electrostatic interactions. The work focuses on conditions which produce sustained microparticle rolling, useful for the development of microfluidic devices which

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service