Skip to Content
Merck
CN

37442

Dihydroxyacetone phosphate lithium salt

≥95.0% (TLC)

Synonym(s):

1-Hydroxy-3-(phosphonooxy)-2-propanone lithium salt, DHAP, Glycerone phosphate lithium salt

Sign In to View Organizational & Contract Pricing.

Select a Size


About This Item

Empirical Formula (Hill Notation):
C3H7O6P · xLi+
CAS Number:
Molecular Weight:
170.06 (free acid basis)
NACRES:
NA.32
PubChem Substance ID:
UNSPSC Code:
12352204
MDL number:
Technical Service
Need help? Our team of experienced scientists is here for you.
Let Us Assist
Technical Service
Need help? Our team of experienced scientists is here for you.
Let Us Assist

Product Name

Dihydroxyacetone phosphate lithium salt, ≥95.0% (TLC)

InChI

1S/C3H7O6P/c4-1-3(5)2-9-10(6,7)8/h4H,1-2H2,(H2,6,7,8)

SMILES string

OCC(COP(O)(O)=O)=O

InChI key

GNGACRATGGDKBX-UHFFFAOYSA-N

assay

≥95.0% (TLC)

form

powder

storage temp.

−20°C

Quality Level

Related Categories

Analysis Note

may contain up to 2-mol-equivalents water

Biochem/physiol Actions

Dihydroxyacetone phosphate (DHAP) is a metabolic intermediate involved in many pathways, including glycolysis, gluconeogenesis, glycerol metabolism, phosphatidic acid synthesis, fat metabolism, and the Calvin cycle.

Storage Class

11 - Combustible Solids

wgk

WGK 3

flash_point_f

Not applicable

flash_point_c

Not applicable

ppe

Eyeshields, Gloves, type N95 (US)


Choose from one of the most recent versions:

Certificates of Analysis (COA)

Lot/Batch Number

Don't see the Right Version?

If you require a particular version, you can look up a specific certificate by the Lot or Batch number.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

Jun Ogawa et al.
Bioscience, biotechnology, and biochemistry, 67(4), 933-936 (2003-06-06)
2-Deoxyribose 5-phosphate was produced from acetaldehyde and dihydroxyacetone phosphate via D-glyceraldehyde 3-phosphate by Klebsiella pneumoniae B-4-4 through deoxyriboaldolase- and triosephosphate isomerase-catalyzing reactions. Under the optimum conditions, 98.7 mM 2-deoxyribose 5-phosphate was produced from 200 mM acetaldehyde and 117 mM dihydroxyacetone
Glycerolipid biosynthesis in peroxisomes via the acyl dihydroxyacetone phosphate pathway.
A K Hajra et al.
Annals of the New York Academy of Sciences, 386, 170-182 (1982-01-01)
Parul Agarwal et al.
Plant cell reports, 38(10), 1235-1248 (2019-06-14)
Using, in silico, in vitro and in planta functional assays, we demonstrate that Ps3'OMT, an 3'-O methyl transferase is linked to papaverine biosynthesis in opium poppy. Papaverine, one of the benzylisoquinoline alkaloids (BIA) synthesized in the medicinally important plant, Papaver
Christopher B Medina et al.
Nature, 580(7801), 130-135 (2020-04-03)
Caspase-dependent apoptosis accounts for approximately 90% of homeostatic cell turnover in the body1, and regulates inflammation, cell proliferation, and tissue regeneration2-4. How apoptotic cells mediate such diverse effects is not fully understood. Here we profiled the apoptotic metabolite secretome and
John P Richard
Biochemistry, 51(13), 2652-2661 (2012-03-14)
Triosephosphate isomerase (TIM) catalyzes the stereospecific 1,2-proton shift at dihydroxyacetone phosphate (DHAP) to give (R)-glyceraldehyde 3-phosphate through a pair of isomeric enzyme-bound cis-enediolate phosphate intermediates. The chemical transformations that occur at the active site of TIM were well understood by

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service