Skip to Content
Merck
CN

S6172

Sodium persulfate

BioXtra, ≥99%

Synonym(s):

Sodium peroxodisulfate

Sign In to View Organizational & Contract Pricing.

Select a Size


About This Item

Linear Formula:
Na2S2O8
CAS Number:
Molecular Weight:
238.10
NACRES:
NA.25
PubChem Substance ID:
UNSPSC Code:
12161700
EC Number:
231-892-1
MDL number:
Assay:
≥99%
Solubility:
H2O: 1 M at 20 °C, clear, colorless
Technical Service
Need help? Our team of experienced scientists is here for you.
Let Us Assist
Technical Service
Need help? Our team of experienced scientists is here for you.
Let Us Assist

Product Name

Sodium persulfate, BioXtra, ≥99%

InChI key

CHQMHPLRPQMAMX-UHFFFAOYSA-L

InChI

1S/2Na.H2O8S2/c;;1-9(2,3)7-8-10(4,5)6/h;;(H,1,2,3)(H,4,5,6)/q2*+1;/p-2

SMILES string

[Na+].[Na+].[O-]S(=O)(=O)OOS([O-])(=O)=O

product line

BioXtra

assay

≥99%

reaction suitability

reagent type: oxidant

impurities

<0.0005% Phosphorus (P)
<0.1% Insoluble matter

solubility

H2O: 1 M at 20 °C, clear, colorless

anion traces

chloride (Cl-): <0.05%

cation traces

Al: <0.0005%
Ca: <0.005%
Cu: <0.0005%
Fe: <0.0005%
K: <0.02%
Mg: <0.001%
Pb: <0.001%
Zn: <0.0005%

Quality Level

Looking for similar products? Visit Product Comparison Guide

Application

<ul>
<li><strong>Electrochemical treatment of organic pollutants in landfill leachate using a three-dimensional electrode system.</strong>: This study explores the electrochemical treatment of landfill leachate using a three-dimensional electrode system. Sodium persulfate is used as an oxidizing agent to degrade organic pollutants effectively, providing a potential method for waste management and environmental protection (Yu et al., 2020).</li>
<li><strong>The Box-Benkhen experimental design for the optimization of the electrocatalytic treatment of wastewaters with high concentrations of phenol and organic matter.</strong>: This paper discusses the optimization of electrocatalytic treatment processes for wastewater containing high levels of phenol and organic matter using sodium persulfate. The study provides valuable insights for improving wastewater treatment efficiency (GilPavas et al., 2009).</li>
<li><strong>Reaction of pectin and glycidyl methacrylate and ulterior formation of free films by reticulation.</strong>: This research involves the chemical modification of pectin with glycidyl methacrylate followed by cross-linking using sodium persulfate, leading to the formation of free-standing films. These films have potential applications in pharmaceuticals and food packaging (Maior et al., 2008).</li>
</ul>

signalword

Danger

Hazard Classifications

Acute Tox. 4 Oral - Ox. Sol. 3 - Resp. Sens. 1 - Skin Irrit. 2 - Skin Sens. 1 - STOT SE 3

target_organs

Respiratory system

Storage Class

5.1B - Oxidizing hazardous materials

wgk

WGK 1

flash_point_f

Not applicable

flash_point_c

Not applicable

ppe

Eyeshields, Faceshields, Gloves, type P3 (EN 143) respirator cartridges

Regulatory Information

危险化学品
This item has

Choose from one of the most recent versions:

Certificates of Analysis (COA)

Lot/Batch Number

Don't see the Right Version?

If you require a particular version, you can look up a specific certificate by the Lot or Batch number.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

Xiaodan Zhao et al.
Journal of the American Chemical Society, 132(16), 5837-5844 (2010-04-03)
By palladium catalysis, the C-H bond functionalization of O-phenylcarbamates with simple arenes has been achieved using sodium persulfate (Na(2)S(2)O(8)), an inexpensive, easy-to-handle, and environmentally friendly oxidant. This oxidative cross-coupling involves two aromatic C-H bonds undergoing concomitant oxidation to furnish a
Chenju Liang et al.
Chemosphere, 70(3), 426-435 (2007-08-19)
In situ chemical oxidation with persulfate anion (S2O82*) is a viable technique for remediation of groundwater contaminants such as trichloroethylene (TCE). An accelerated reaction using S2O82* to destroy TCE can be achieved via chemical activation with ferrous ion to generate
Chenju Liang et al.
Water research, 42(15), 4091-4100 (2008-08-23)
The present study focused on evaluation of activated persulfate (PS) anion (S(2)O(8)(2-)) oxidative degradation of benzene, toluene, ethylbenzene, and xylene (constituents of gasoline and known collectively as BTEX) contamination. The results indicated that BTEX were effectively oxidized by PS in
Richard L Johnson et al.
Environmental science & technology, 42(24), 9350-9356 (2009-01-30)
Contaminant destruction with in situ chemical oxidation (ISCO) using persulfate (peroxydisulfate, S2O8(2-)) can be enhanced by activation, which increases the rate of persulfate decomposition to sulfate radicals (SO4*-). This step initiates a chain of radical reactions involving species (including SO4*-
Mushtaque Ahmad et al.
Journal of contaminant hydrology, 115(1-4), 34-45 (2010-05-05)
Persulfate dynamics in the presence of subsurface minerals was investigated as a basis for understanding persulfate activation for in situ chemical oxidation (ISCO). The mineral-mediated decomposition of persulfate and generation of oxidants and reductants was investigated with four iron and

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service