Skip to Content
Merck
CN

86837

Tetrabutylammonium benzoate

for electrochemical analysis, ≥99.0%

Sign In to View Organizational & Contract Pricing.

Select a Size


About This Item

Linear Formula:
(CH3CH2CH2CH2)4N(OCOC6H5)
CAS Number:
Molecular Weight:
363.58
UNSPSC Code:
26111700
NACRES:
NB.61
PubChem Substance ID:
MDL number:
Beilstein/REAXYS Number:
4070140
Technical Service
Need help? Our team of experienced scientists is here for you.
Let Us Assist
Technical Service
Need help? Our team of experienced scientists is here for you.
Let Us Assist

Product Name

Tetrabutylammonium benzoate, for electrochemical analysis, ≥99.0%

InChI

1S/C16H36N.C7H6O2/c1-5-9-13-17(14-10-6-2,15-11-7-3)16-12-8-4;8-7(9)6-4-2-1-3-5-6/h5-16H2,1-4H3;1-5H,(H,8,9)/q+1;/p-1

SMILES string

[O-]C(=O)c1ccccc1.CCCC[N+](CCCC)(CCCC)CCCC

InChI key

WGYONVRJGWHMKV-UHFFFAOYSA-M

assay

≥99.0% (NT)
≥99.0%

form

crystals

mp

64-67 °C (lit.)

solubility

acetonitrile: 0.1 g/mL, clear, colorless

Quality Level

Looking for similar products? Visit Product Comparison Guide

Application

Tetrabutylammonium benzoate may be used as an analytical reagent for the electrochemical generation of hydrogen from acetic acid using a molecular molybdenum-oxo catalyst.

General description

Visit our Sensor Applications portal to learn more.

pictograms

Exclamation mark

signalword

Warning

Hazard Classifications

Eye Irrit. 2 - Skin Irrit. 2 - STOT SE 3

target_organs

Respiratory system

Storage Class

11 - Combustible Solids

wgk

WGK 3

flash_point_f

Not applicable

flash_point_c

Not applicable

ppe

dust mask type N95 (US), Eyeshields, Gloves


Choose from one of the most recent versions:

Certificates of Analysis (COA)

Lot/Batch Number

Don't see the Right Version?

If you require a particular version, you can look up a specific certificate by the Lot or Batch number.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

Electrochemical generation of hydrogen from acetic acid using a molecular molybdenum?oxo catalyst.
Thoi SV, et al.
Energy & Environmental Science, 5(7), 7762-7770 (2012)
Daniel J Martin et al.
Science advances, 6(11), eaaz3318-eaaz3318 (2020-03-24)
The development of advanced chemical-to-electrical energy conversions requires fast and efficient electrocatalysis of multielectron/multiproton reactions, such as the oxygen reduction reaction (ORR). Using molecular catalysts, correlations between the reaction rate and energy efficiency have recently been identified. Improved catalysis requires
Ken T Ngo et al.
Journal of the American Chemical Society, 139(7), 2604-2618 (2017-01-25)
Electrocatalytic reduction of CO

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service