Skip to Content
Merck
CN
All Photos(1)

Documents

69875

Sigma-Aldrich

Molybdenumhexacarbonyl

technical

Synonym(s):

Hexacarbonylmolybdenum(0)

Sign Into View Organizational & Contract Pricing


About This Item

Linear Formula:
Mo(CO)6
CAS Number:
Molecular Weight:
264.00
EC Number:
MDL number:
UNSPSC Code:
12352103
PubChem Substance ID:
NACRES:
NA.23

vapor density

9.1 (vs air)

Quality Level

grade

technical

form

solid

reaction suitability

core: molybdenum
reagent type: catalyst

bp

156 °C (lit.)

mp

150 °C (dec.) (lit.)

density

1.96 g/mL at 25 °C (lit.)

SMILES string

[Mo].[C-]#[O+].[C-]#[O+].[C-]#[O+].[C-]#[O+].[C-]#[O+].[C-]#[O+]

InChI

1S/6CO.Mo/c6*1-2;

InChI key

KMKBZNSIJQWHJA-UHFFFAOYSA-N

Looking for similar products? Visit Product Comparison Guide

General description

Molybdenum hexacarbonyl is a colorless compound that sublimates and decomposes without melting at 150oC. It has an octahedral structure. Inherent sublimation of molybdenum hexacarbonyl permits it to perform as an active liquefaction catalyst. To form a catalyst it is adsorbed on dehydroxylated alumina forming subcarboyls.

Application

Alumina supported molybdenum hexacarbonyl acts as an active catalyst. It is used to synthesize MoO and MoC nanowires by electron beam induced deposition.

Pictograms

Skull and crossbones

Signal Word

Danger

Hazard Statements

Hazard Classifications

Acute Tox. 3 Inhalation

WGK

WGK 3

Flash Point(F)

Not applicable

Flash Point(C)

Not applicable

Personal Protective Equipment

dust mask type N95 (US), Eyeshields, Gloves

Choose from one of the most recent versions:

Certificates of Analysis (COA)

Lot/Batch Number

Don't see the Right Version?

If you require a particular version, you can look up a specific certificate by the Lot or Batch number.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

An investigation of the chemistry of molybdenum hexacarbonyl on thin dehydroxylated alumina films in ultrahigh vacuum
Catalysis Letters, 91(1-2), 83-88 (2003)
Microstructural analysis and Transport Properties of MoO and MoC nanostructures prepared by focused electron beam-induced deposition
Makise K, et al
Scientific Reports, 4 (2014)
Patrik Nordeman et al.
The Journal of organic chemistry, 77(24), 11393-11398 (2012-12-05)
A bridged two-vial system aminocarbonylation protocol where Mo(CO)(6) functions as an external in situ solid source of CO has been developed. For the first time both nitro group containing aryl/heteroaryl iodides and bromides gave good to excellent yields in the
Paul Nissenson et al.
Physical chemistry chemical physics : PCCP, 8(40), 4700-4710 (2006-10-19)
While there is increasing evidence for unique chemical reactions at interfaces, there are fewer data on photochemistry at liquid-vapor junctions. This paper reports a comparison of the photolysis of molybdenum hexacarbonyl, Mo(CO)(6), in 1-decene either as liquid droplets or in
John Spencer
Future medicinal chemistry, 2(2), 161-168 (2011-03-24)
Microwave-mediated chemistry, involving the reduction of nitroarenes with molybdenum hexacarbonyl as a stoichiometric reducing agent, has been employed in the synthesis of a range of anilines. Many of these reactions exhibit high levels of chemoselectivity, tolerating unsaturation, steric hindrance and

Articles

Spintronics offer breakthroughs over conventional memory/logic devices with lower power, leakage, saturation, and complexity.

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service