Skip to Content
Merck
CN
All Photos(1)

Documents

Safety Information

471577

Sigma-Aldrich

Dimethyl sulfide

≥99%

Synonym(s):

DMS, Methyl sulfide

Sign Into View Organizational & Contract Pricing


About This Item

Linear Formula:
(CH3)2S
CAS Number:
Molecular Weight:
62.13
Beilstein:
1696847
EC Number:
MDL number:
UNSPSC Code:
12352100
PubChem Substance ID:
NACRES:
NA.21

vapor density

2.1 (vs air)

Quality Level

vapor pressure

26.24 psi ( 55 °C)
7.79 psi ( 20 °C)

Assay

≥99%

autoignition temp.

402 °F

expl. lim.

19.7 %

refractive index

n20/D 1.435 (lit.)

bp

38 °C (lit.)

mp

−98 °C (lit.)

solubility

water: soluble 7.28 g/L at 20 °C

density

0.846 g/mL at 25 °C (lit.)

SMILES string

CSC

InChI

1S/C2H6S/c1-3-2/h1-2H3

InChI key

QMMFVYPAHWMCMS-UHFFFAOYSA-N

Gene Information

Related Categories

General description

Dimethyl sulfide (DMS) is a biogenic sulfur compound that is released from the ocean to the atmosphere. It forms the main component of the global sulfur cycle. The thermal decomposition behavior of dimethyl sulfide in gas phase has been investigated in a static system at 681-723K. The mechanism of its photochemical oxidation in atmosphere has been described. The rate constant of the gas phase reaction between OH radicals and DMS have been determined by relative rate methods and flash photolysis technique. The differential Raman cross section, σDMS at different excitation wavelengths has been measured. The adsorption of DMS on activated carbons (ACs) has been reported to take place by hydrogen bonding.

Application

  • Characterization of the aroma-active compounds in Xiaokeng green tea by three pretreatment methods combined with gas chromatography-olfactometry (GC-O).: This study identified and characterized the aroma-active compounds in Xiaokeng green tea, highlighting the significant role of dimethyl sulfide as a contributor to its unique aroma profile (Gan et al., 2024).
  • Novel insights into dimethylsulfoniopropionate cleavage by deep subseafloor fungi.: This article provides new insights into the metabolic pathways of deep-sea fungi, focusing on the cleavage of dimethylsulfoniopropionate (DMSP) and subsequent production of dimethyl sulfide, impacting sulfur cycling in marine ecosystems (Liu et al., 2024).
  • Adsorption Mechanism and Regeneration Performance of Calcined Zeolites for Hydrogen Sulfide and Its Application.: The study explores the use of calcined zeolites for the adsorption of hydrogen sulfide, a precursor to dimethyl sulfide, and discusses the material′s regeneration performance for industrial applications (Zha et al., 2024).

Pictograms

Flame

Signal Word

Danger

Hazard Statements

Hazard Classifications

Flam. Liq. 2

WGK

WGK 1

Flash Point(F)

closed cup

Flash Point(C)

closed cup

Personal Protective Equipment

dust mask type N95 (US), Eyeshields, Gloves

Regulatory Information

危险化学品

Choose from one of the most recent versions:

Certificates of Analysis (COA)

Lot/Batch Number

Sorry, we don't have COAs for this product available online at this time.

If you need assistance, please contact Customer Support.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

The pyrolysis of dimethyl sulfide, kinetics and mechanism.
Shum LGS and Benson SW.
International Journal of Chemical Kinetics, 17(7), 749-761 (1985)
Adsorption of dimethyl sulfide vapors by activated carbons.
Goyal M, et al.
Colloids and Surfaces. A, Physicochemical and Engineering Aspects, 322(1), 164-169 (2008)
The reaction of OH radicals with dimethyl sulfide.
Wallington TJ, et al.
International Journal of Chemical Kinetics, 18(8), 837-846 (1986)
Differential Raman cross section of dimethyl sulfide.
Barletta RE and Roe CH.
Journal of Raman Spectroscopy, 42(1), 117-121 (2011)
David M Snider et al.
PloS one, 10(3), e0118954-e0118954 (2015-03-27)
Rising concentrations of nitrous oxide (N2O) in the atmosphere are causing widespread concern because this trace gas plays a key role in the destruction of stratospheric ozone and it is a strong greenhouse gas. The successful mitigation of N2O emissions

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service