Skip to Content
Merck
CN
All Photos(1)

Documents

146153

Silicone oil

for melting point and boiling point apparatuses

Sign Into View Organizational & Contract Pricing


About This Item

Linear Formula:
[-Si(CH3)2O-]n
CAS Number:
MDL number:
UNSPSC Code:
41100000
NACRES:
NB.77

vapor density

>1 (vs air)

vapor pressure

<5 mmHg ( 25 °C)
5 mmHg ( 20 °C)

type

for melting point and boiling point apparatuses

parameter

−40-350 °F temp. range (−40-175 °C)

refractive index

n20/D 1.403 (lit.)

viscosity

45.0-55.0(25 °C)

bp

>140 °C/0.002 mmHg (lit.)

density

0.963 g/mL at 25 °C

Looking for similar products? Visit Product Comparison Guide

Application

Silicone oil has been used:
  • for melting-point and boiling-point apparatus
  • in membrane contactors to impregnate fibers
  • on rheometer samples (chicken skin and bovine gelatin) to prevent evaporation during heating using temperature sweeps and frequency sweeps

Biochem/physiol Actions

Silicone oil is suitable for use in under-oil screenings of proteins.

Features and Benefits

  • High viscosity
  • Low water solubility
  • Low vapor pressure

WGK

WGK 1

Flash Point(F)

214.0 °F

Flash Point(C)

101.1 °C

Personal Protective Equipment

dust mask type N95 (US), Eyeshields, Gloves

Choose from one of the most recent versions:

Certificates of Analysis (COA)

Lot/Batch Number

Sorry, we don't have COAs for this product available online at this time.

If you need assistance, please contact Customer Support.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

Sara Sanders et al.
PloS one, 13(5), e0197638-e0197638 (2018-05-18)
The in vivo microenvironment of bacterial pathogens is often characterized by nutrient limitation. Consequently, conventional rich in vitro culture conditions used widely to evaluate antibacterial agents are often poorly predictive of in vivo activity, especially for agents targeting metabolic pathways.
Florent Badique et al.
Biomaterials, 34(12), 2991-3001 (2013-01-30)
We have recently demonstrated strong nuclear deformation of SaOs-2 osteosarcoma cells on poly-L-lactic acid (PLLA) micropillar substrates. In the present study, we first demonstrated that chemical and mechanical properties of the micropillar substrates have no dominant effect on deformation. However
Sung-Jin Kim et al.
Lab on a chip, 13(8), 1644-1648 (2013-02-23)
We present experiments and theory of a constant flow-driven microfluidic oscillator with widely tunable oscillation periods. This oscillator converts two constant input-flows from a syringe pump into an alternating, periodic output-flow with oscillation periods that can be adjusted to between
Yuwei Liu et al.
Langmuir : the ACS journal of surfaces and colloids, 29(9), 2897-2905 (2013-02-12)
Poly(dimethylsiloxane) (PDMS) materials have been extensively shown to function as excellent fouling-release (FR) coatings in the marine environment. The incorporation of biocide moieties, such as quaternary ammonium salts (QAS), can impart additional antibiofouling properties to PDMS-based FR coating systems. In
Karthik R Balakrishnan et al.
Lab on a chip, 13(7), 1302-1307 (2013-02-07)
Resistive-pulse sensing (RPS), which is based on measuring the current pulse produced when a single particle transits a pore or channel, is an extremely versatile technique used to determine the size and concentration of cells and viruses and to detect

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service