Skip to Content
Merck
CN
All Photos(1)

Documents

Safety Information

15-1345

Sigma-Aldrich

Iron(III) oxide

SAJ first grade, ≥98.0%

Sign Into View Organizational & Contract Pricing

Synonym(s):
Ferric oxide
Empirical Formula (Hill Notation):
Fe2O3
CAS Number:
Molecular Weight:
159.69
EC Number:
MDL number:
UNSPSC Code:
12352300
PubChem Substance ID:

grade

SAJ first grade

Assay

≥98.0%

form

solid

reaction suitability

reagent type: catalyst
core: iron

availability

available only in Japan

SMILES string

O=[Fe]O[Fe]=O

InChI

1S/2Fe.3O

InChI key

JEIPFZHSYJVQDO-UHFFFAOYSA-N

Looking for similar products? Visit Product Comparison Guide

WGK

nwg

Flash Point(F)

Not applicable

Flash Point(C)

Not applicable

Personal Protective Equipment

dust mask type N95 (US), Eyeshields, Gloves

Regulatory Information

新产品

Certificates of Analysis (COA)

Search for Certificates of Analysis (COA) by entering the products Lot/Batch Number. Lot and Batch Numbers can be found on a product’s label following the words ‘Lot’ or ‘Batch’.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

Brian T Farrell et al.
Neurology, 81(3), 256-263 (2013-06-19)
The study goal was to assess the benefits and potential limitations in the use of ultrasmall superparamagnetic iron oxide (USPIO) nanoparticles in the MRI diagnosis of CNS inflammatory diseases and primary CNS lymphoma. Twenty patients with presumptive or known CNS
Diana Couto et al.
Toxicology letters, 225(1), 57-65 (2013-12-03)
Iron oxide nanoparticles (ION), with different coatings and sizes, have attracted extensive interest in the last years to be applied in drug delivery, cancer therapy and as contrast agents in imagiologic techniques such as magnetic resonance imaging. However, the safety
Hongrong Jiang et al.
Journal of biomedical nanotechnology, 9(4), 674-684 (2013-04-30)
In present study, we put forward an approach to prepare three-layer core-shell Fe3O4@SiO2@Au magnetic nanocomposites via the combination of self-assembling, seed-mediated growing and multi-step chemical reduction. The Fe3O4@SiO2@Au magnetic nanocomposites were analyzed and characterized by transmission electron microscope (TEM), scanning
Rajenahally V Jagadeesh et al.
Science (New York, N.Y.), 342(6162), 1073-1076 (2013-11-30)
Production of anilines--key intermediates for the fine chemical, agrochemical, and pharmaceutical industries--relies on precious metal catalysts that selectively hydrogenate aryl nitro groups in the presence of other easily reducible functionalities. Herein, we report convenient and stable iron oxide (Fe2O3)-based catalysts
Alice Panariti et al.
Journal of biomedical nanotechnology, 9(9), 1556-1569 (2013-08-29)
Magnetic nanoparticles have emerged as important players in current research in modern medicine since they can be used in medicine for diagnosis and/or therapeutic treatment of diseases. Among many therapeutic applications of iron-based nanoparticles, drug delivery and photothermal therapy are

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service