Skip to Content
Merck
CN
All Photos(1)

Documents

371962

Sigma-Aldrich

H-89, Dihydrochloride

InSolution 10 mM, ≥99%, reversible ATP-competitive inhibitor of protein kinase A

Synonym(s):

InSolution H-89, Dihydrochloride, N-[2-(( p-Bromocinnamyl)amino)ethyl]-5-isoquinolinesulfonamide, 2HCl, PKA Inhibitor III, N-[2-((p-Bromocinnamyl)amino)ethyl]-5-isoquinolinesulfonamide, 2HCl, PKA Inhibitor III

Sign Into View Organizational & Contract Pricing


About This Item

Empirical Formula (Hill Notation):
C20H20BrN3O2S
Molecular Weight:
446.36
UNSPSC Code:
12352200
NACRES:
NA.77

Quality Level

Assay

≥99% (HPLC)

form

liquid

manufacturer/tradename

Calbiochem®

storage condition

OK to freeze
protect from light

shipped in

wet ice

storage temp.

−20°C

General description

A solution of H-89, Dihydrochloride (Cat. No. 371963) in anhydrous DMSO. H-89 is a cell-permeable selective and potent inhibitor of protein kinase A (Ki = 48 nM). Inhibits other kinases at several fold higher concentrations: myosin light chain kinase (Ki = 28.3 µM), Ca2+/calmodulin-dependent protein kinase II (Ki = 29.7 µM), protein kinase C (Ki = 31.7 µM), casein kinase I (Ki = 38.3 µM), and Rho Kinase II (IC50 = 270 nM). May be used to discriminate between the effects of PKA and cAMP-regulated guanine-nucleotide-exchange factors (GEFs), such as GEFI or Epac (exchange protein directly activated by cAMP) and GEFII. Reported to induce neurite formation in NG 108-15 cells (~1 µM) by blocking the action of Rho kinase II.

Biochem/physiol Actions

Cell permeable: no
Primary Target
PKA
Product does not compete with ATP.
Reversible: no
Target Ki: 48 nM against protein kinase A

Packaging

Packaged under inert gas

Warning

Toxicity: Irritant (B)

Physical form

A 10 mM (1 mg/193 µl) solution of H-89, 2HCl (Cat. No. 371963) in DMSO.

Reconstitution

Following initial thaw, aliquot and freeze (-20°C).

Other Notes

Leemhuis, J., et al. 2002. J. Pharmacol. Exp. Ther.300, 1000.
Davies, S.P. et al. 2000. Biochem. J.351, 95.
de Rooij, J., et al. 1998. Nature.396, 474.
Kawasaki, H., et al. 1998. Science.282, 2275.
Findik, D., et al. 1995. J. Cell. Biochem.57, 12.
Hidaka, H., and Kobayashi, R. 1992. Annu. Rev. Pharmacol. Toxicol.32, 377.
Geilen, C.C., et al. 1992. FEBS Lett.309, 381.
Chijiwa, T., et al. 1990. J. Biol. Chem.265, 5267.
Combest, W.L., et al. 1988. J. Neurochem.51, 1581.

Legal Information

CALBIOCHEM is a registered trademark of Merck KGaA, Darmstadt, Germany

WGK

WGK 1

Flash Point(F)

188.6 °F

Flash Point(C)

87 °C


Certificates of Analysis (COA)

Search for Certificates of Analysis (COA) by entering the products Lot/Batch Number. Lot and Batch Numbers can be found on a product’s label following the words ‘Lot’ or ‘Batch’.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

Nicole Welch et al.
iScience, 25(11), 105325-105325 (2022-11-09)
Skeletal muscle generation of ammonia, an endogenous cytotoxin, is increased during exercise. Perturbations in ammonia metabolism consistently occur in chronic diseases, and may blunt beneficial skeletal muscle molecular responses and protein homeostasis with exercise. Phosphorylation of skeletal muscle proteins mediates
Kavya Vinayan Pushpalatha et al.
Nature communications, 13(1), 2782-2782 (2022-05-20)
Cytoplasmic RNP condensates enriched in mRNAs and proteins are found in various cell types and associated with both buffering and regulatory functions. While a clear link has been established between accumulation of aberrant RNP aggregates and progression of aging-related neurodegenerative
Shi-Meng Liu et al.
Pharmaceuticals (Basel, Switzerland), 15(10) (2022-10-28)
Vascular calcification (VC) is a common pathophysiological process of chronic kidney disease (CKD). Sirtuin 3 (Sirt3), a major NAD+-dependent protein deacetylase predominantly in mitochondria, is involved in the pathogenesis of VC. We previously reported that intermedin (IMD) could protect against
Yanyong Xu et al.
Nature metabolism, 3(1), 59-74 (2021-01-20)
Activating transcription factor (ATF)3 is known to have an anti-inflammatory function, yet the role of hepatic ATF3 in lipoprotein metabolism or atherosclerosis remains unknown. Here we show that overexpression of human ATF3 in hepatocytes reduces the development of atherosclerosis in
Hiroshi Senoo et al.
Molecular cell, 81(22), 4622-4634 (2021-09-23)
AKT is a serine/threonine kinase that plays an important role in metabolism, cell growth, and cytoskeletal dynamics. AKT is activated by two kinases, PDK1 and mTORC2. Although the regulation of PDK1 is well understood, the mechanism that controls mTORC2 is

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service