Skip to Content
Merck
CN
All Photos(2)

Documents

Safety Information

GF48129509

Silver

wire reel, 1m, diameter 0.0125mm, hard, 99.99%

Synonym(s):

Silver, AG005102

Sign Into View Organizational & Contract Pricing


About This Item

Linear Formula:
Ag
CAS Number:
Molecular Weight:
107.87
MDL number:
UNSPSC Code:
12141740
PubChem Substance ID:
NACRES:
NA.23

Assay

99.99%

form

wire

manufacturer/tradename

Goodfellow 481-295-09

resistivity

1.59 μΩ-cm, 20°C

L × diam.

1 m × 0.0125 mm

bp

2212 °C (lit.)

mp

960 °C (lit.)

density

10.49 g/cm3 (lit.)

SMILES string

[Ag]

InChI

1S/Ag

InChI key

BQCADISMDOOEFD-UHFFFAOYSA-N

Related Categories

General description

For updated SDS information please visit www.goodfellow.com.

Legal Information

Product of Goodfellow

Storage Class Code

13 - Non Combustible Solids

WGK

WGK 3

Flash Point(F)

Not applicable

Flash Point(C)

Not applicable

Regulatory Information

新产品

Certificates of Analysis (COA)

Search for Certificates of Analysis (COA) by entering the products Lot/Batch Number. Lot and Batch Numbers can be found on a product’s label following the words ‘Lot’ or ‘Batch’.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

S R Mueller-Spitz et al.
Letters in applied microbiology, 58(4), 330-337 (2013-11-30)
Polycyclic aromatic hydrocarbons (PAH) are a common environmental contaminant originating from both anthropogenic and natural sources. Mycobacterium species are highly adapted to utilizing a variety of PAH. Silver nanoparticles (AgNP) are an emerging contaminant that possess bactericidal properties, interferes with
Swarup Roy et al.
Journal of nanoscience and nanotechnology, 14(7), 4899-4905 (2014-04-25)
Binding interaction of biologically synthesized silver nanoparticles with bovine serum albumin (BSA) has been investigated by UV-Vis and fluorescence spectroscopic techniques. UV-Vis analysis implies the formation of the ground state complex between BSA and silver nanoparticles. The analysis of fluorescence
Ana López-Serrano Oliver et al.
Environmental pollution (Barking, Essex : 1987), 189, 87-91 (2014-03-20)
Silver nanoparticles (AgNPs) are widely used in many applications and likely released into the aquatic environment. There is increasing evidence that Ag is efficiently delivered to aquatic organisms from AgNPs after aqueous and dietary exposures. Accumulation of AgNPs through the
Cheng-Kuan Su et al.
Toxicology letters, 227(2), 84-90 (2014-04-08)
With the increasing prevalence of silver nanoparticles (AgNPs) in various products, whether such AgNPs will introduce new injury mechanisms from new pathologies remains to be determined. From the toxicokinetic viewpoint, it is vital to have in-depth knowledge of their in
Yu Sun et al.
Journal of nanoscience and nanotechnology, 14(6), 4481-4485 (2014-04-18)
The fluorescence enhancement effect of Rh6G molecules deposited on the silver film substrate decorated with nanohole arrays was investigated in this paper. The prepared substrate, decorated with nanohole arrays, was fabricated with the deposition of silver films onto the anodic

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service