Skip to Content
Merck
CN
All Photos(1)

Key Documents

Safety Information

933090

Sigma-Aldrich

NanoFabTx NanoFlash PEG-PCL drug formulation screening kit

for CIJ synthesis of nanoparticles

Sign Into View Organizational & Contract Pricing


About This Item

UNSPSC Code:
12162002
NACRES:
NA.21

storage temp.

2-8°C

Application

NanoFabTx NanoFlash PEG-PCL drug formulation screening kit is a ready to use nanoformulation kit for flash nanoprecipitation synthesis of PEGylated poly(caprolactone) (PCL) nanoparticles for drug delivery research applications. This kit contains rationally selected PEGylated PCL polymers and stabilizer, enabling users to screen and select nanoformulations without the need for lenghty trial and error optimization. These PEGylated PCL polymers have been widely used in drug delivery systems for controlled drug release of many different types of therapeutic molecules.

This kit has been curated and designed for flash nanoprecipitiaton (FNP) nanoparticle synthesis using a confined impingement jet (CIJ) mixer, such as the NanoFabTx NanoFlash CIJ Mixer, and detailed step-by-step instructions are provided.

Features and Benefits

  • Ready-to-use nanoformulation kit for PEGylated nanoparticles
  • Step-by-step flash nanoprecipitation protocol
  • Create specifically sized, biodegradable, PEGylated PCL nanoparticles
  • Maximize the encapsulation of hydrophobic drugs
  • Three different PEGylated PCL polymers are included
  • Optimized for 60 nm-150 nm nanoparticles
A flash nanoprecipitation protocol to prepare drug-encapsulated nanoparticles using the NanoFabTx NanoFlash CIJ Mixer is included and can be found under the Protocol section of this page.

Legal Information

NANOFABTX is a trademark of Sigma-Aldrich Co. LLC

Storage Class Code

11 - Combustible Solids

WGK

WGK 3

Flash Point(F)

Not applicable

Flash Point(C)

Not applicable

Regulatory Information

新产品

Choose from one of the most recent versions:

Certificates of Analysis (COA)

Lot/Batch Number

Sorry, we don't have COAs for this product available online at this time.

If you need assistance, please contact Customer Support.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

Jing Han et al.
Journal of pharmaceutical sciences, 101(10), 4018-4023 (2012-07-11)
Johnson and Prud'homme (2003. AICHE J 49:2264-2282) introduced the confined impingement jets (CIJ) mixer to prepare nanoparticles loaded with hydrophobic compounds (e.g., drugs, inks, fragrances, or pheromones) via flash nanoprecipitation (FNP). We have modified the original CIJ design to allow
C Thomasin et al.
Journal of pharmaceutical sciences, 87(3), 269-275 (1998-04-02)
Phase separation (frequently called coacervation) of poly(lactide) (PLA) and poly(lactide-co-glycolide) (PLGA) is a classical method for drug microencapsulation. Here, attempts have been made to describe this process in the light of thermodynamics. Different PLA/PLGAs were dissolved in either dichloromethane or
Robert F Pagels et al.
Journal of controlled release : official journal of the Controlled Release Society, 219, 519-535 (2015-09-12)
Biologically derived therapeutics, or biologics, are the most rapidly growing segment of the pharmaceutical marketplace. However, there are still unmet needs in improving the delivery of biologics. Injectable polymeric nanoparticles and microparticles capable of releasing proteins and peptides over time
K S Soppimath et al.
Journal of controlled release : official journal of the Controlled Release Society, 70(1-2), 1-20 (2001-02-13)
This review presents the most outstanding contributions in the field of biodegradable polymeric nanoparticles used as drug delivery systems. Methods of preparation, drug loading and drug release are covered. The most important findings on surface modification methods as well as
Byung Kook Lee et al.
Advanced drug delivery reviews, 107, 176-191 (2016-06-06)
Poly(d,l-lactic acid) (PLA) has been widely used for various biomedical applications for its biodegradable, biocompatible, and nontoxic properties. Various methods, such as emulsion, salting out, and precipitation, have been used to make better PLA micro- and nano-particle formulations. They are

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service