Skip to Content
Merck
CN
All Photos(1)

Key Documents

Safety Information

923796

Sigma-Aldrich

INVIVO-GEL essential bioink

suitable for 3D bioprinting applications

Synonym(s):

3D bioprinting, 3DBP, ECM

Sign Into View Organizational & Contract Pricing


About This Item

UNSPSC Code:
12352201
NACRES:
NA.23

Quality Level

storage temp.

2-8°C

Application

INVIVO-GEL essential bioink is specifically developed and optimized for 3D bioprinting applications. The INVIVO-GEL essential bioink kit includes optimally formulated gelatin-based hydrogel complex packed in syringe for easy dispensing. The kit also includes Gel-linker, which reinforces mechanical stability. A transparent hydrogel forms when contents are properly mixed and exposed to UV light. This bioink is capable of generating mechanically stable 3D structures that can be maintained for days in the culture environment.

Components

INVIVO-GEL Essential in syringe 5mL x 2

Gel-linker(A) powder 500µL x 1

Pictograms

Exclamation mark

Signal Word

Warning

Hazard Statements

Hazard Classifications

Eye Irrit. 2 - Skin Sens. 1

Storage Class Code

11 - Combustible Solids

WGK

WGK 1

Regulatory Information

新产品

Choose from one of the most recent versions:

Certificates of Analysis (COA)

Lot/Batch Number

Don't see the Right Version?

If you require a particular version, you can look up a specific certificate by the Lot or Batch number.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

Mengxiang Zhu et al.
Scientific reports, 9(1), 6863-6863 (2019-05-06)
Gelatin methacryloyl (GelMA) is a versatile material for a wide range of bioapplications. There is an intense interest in developing effective chemical strategies to prepare GelMA with a high degree of batch-to-batch consistency and controllability in terms of methacryloyl functionalization
Designing Gelatin Methacryloyl (GelMA)-Based Bioinks for Visible Light Stereolithographic 3D Biofabrication.
Kumar H, et al.
Macromolecular Bioscience, 11 (2020)
Shining Xiao et al.
Stem cell reviews and reports, 15(5), 664-679 (2019-06-04)
Gelatin methacrylate (GelMA)-based hydrogels are gaining a great deal of attention as potentially implantable materials in tissue engineering applications because of their biofunctionality and mechanical tenability. Since different natural tissues respond differently to mechanical stresses, an ideal implanted material would
Mengxiang Zhu et al.
Scientific reports, 9(1), 6863-6863 (2019-05-06)
Gelatin methacryloyl (GelMA) is a versatile material for a wide range of bioapplications. There is an intense interest in developing effective chemical strategies to prepare GelMA with a high degree of batch-to-batch consistency and controllability in terms of methacryloyl functionalization
Kan Yue et al.
Biomaterials, 73, 254-271 (2015-09-29)
Gelatin methacryloyl (GelMA) hydrogels have been widely used for various biomedical applications due to their suitable biological properties and tunable physical characteristics. GelMA hydrogels closely resemble some essential properties of native extracellular matrix (ECM) due to the presence of cell-attaching

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service