Skip to Content
Merck
CN
All Photos(1)

Documents

Safety Information

921556

Sigma-Aldrich

Graphene oxide

organic solvent dispersible

Sign Into View Organizational & Contract Pricing

Synonym(s):
Graphene oxide, Graphene oxide for non-aqueous solvent dispersions, Graphene oxide for organic solvent dispersions
Linear Formula:
CxHyOz
CAS Number:
UNSPSC Code:
12352119
NACRES:
NA.23

Quality Level

form

solid

solubility

2-propanol: soluble 2 mg/mL (IPA)
DMSO: soluble 2 mg/mL (dimethyl sulfoxide)
NMP: soluble 2 mg/mL (1-methyl-2-pyrrolidinone)
THF: soluble 2 mg/mL (tetrahydrofuran )
dichloromethane: soluble 2 mg/mL (DCM)
ethyl acetate: soluble 2 mg/mL (EtOAc)
soluble (dispersible in organic solvents)

Related Categories

General description

This graphene oxide product has been formulated to make the graphene oxide dispersible in many anhydrous organic solvents including dichloromethane (DCM), dimethyl sulfoxide (DMSO), 2-propanol (IPA), tetrahydrofuran (THF), and 1-methyl-2-pyrrolidinone (NMP).

Application

Our reformulated non-covalently modified graphene oxide allows you to expore the unique properties of graphene oxide in new ways that were not previously possible. You can use our hydrophobic graphene oxide to make composites with polymers and other nanomaterials that are incompatiable with or insoluble in water. Additionaly, graphene oxide may be reduced to give electrically conductive composites that have been used in applications such as fuel cells, photocatalysis, supercapacitors, lithium-ion batteries, sodium-ion batteries, and lithium sulfur batteries.

Pictograms

Exclamation mark

Signal Word

Warning

Hazard Statements

Precautionary Statements

Hazard Classifications

Acute Tox. 4 Oral

WGK

WGK 3

Regulatory Information

新产品

Certificates of Analysis (COA)

Search for Certificates of Analysis (COA) by entering the products Lot/Batch Number. Lot and Batch Numbers can be found on a product’s label following the words ‘Lot’ or ‘Batch’.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

Yongming Sun et al.
ACS nano, 5(9), 7100-7107 (2011-08-10)
Self-assembled hierarchical MoO(2)/graphene nanoarchitectures have been fabricated on a large scale through a facile solution-phase process and subsequent reduction of the Mo-precursor/graphene composite. The as-formed MoO(2)/graphene nanohybrid as an anode material for lithium-ion batteries exhibits not only a highly reversible
Graphene/Polyaniline Nanofiber Composites as Supercapacitor Electrodes.
Zhang K, et al.
Chemistry of Materials, 22(4), 1392-1401 (2010)
Jun Zhang et al.
Nano letters, 12(9), 4584-4589 (2012-08-17)
Design and preparation of efficient artificial photosynthetic systems for harvesting solar energy by production of hydrogen from water splitting is of great importance from both theoretical and practical viewpoints. ZnS-based solid solutions have been fully proved to be an efficient
Lamuel David et al.
ACS nano, 8(2), 1759-1770 (2014-01-23)
We study the synthesis and electrochemical and mechanical performance of layered free-standing papers composed of acid-exfoliated few-layer molybdenum disulfide (MoS2) and reduced graphene oxide (rGO) flakes for use as a self-standing flexible electrode in sodium-ion batteries. Synthesis was achieved through
Yongye Liang et al.
Nature materials, 10(10), 780-786 (2011-08-09)
Catalysts for oxygen reduction and evolution reactions are at the heart of key renewable-energy technologies including fuel cells and water splitting. Despite tremendous efforts, developing oxygen electrode catalysts with high activity at low cost remains a great challenge. Here, we

Articles

Advanced technologies for energy conversion and storage aim to improve performance and reduce environmental impact.

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service