916439
Lithium Manganese Oxide spinel (LMO) powder
battery grade
Synonym(s):
LMO, Lithium manganese(III,IV) oxide, NANOMYTE® BE-30
Sign Into View Organizational & Contract Pricing
All Photos(1)
About This Item
Recommended Products
grade
battery grade
Quality Level
description
Charge (First cycle – 4.2V, C/10): 110 mAh/g ± 5%
Discharge (First cycle – 3V, C/10): ≥ 100 mAh/g
form
powder
mol wt
Mw 180.81 g/mol
composition
LiMn2O4
grain size
30-50 nm
avg. part. size
6-7 μm (APS)
density
4.0 g/cm3 (lit.)
application(s)
battery manufacturing
SMILES string
[Mn](=O)=O.[Mn](=O)[O-].[Li+]
InChI key
VLXXBCXTUVRROQ-UHFFFAOYSA-N
Related Categories
General description
Lithium Manganate (LiMn2O4) is a cathode material with a spinel structure, which allows the material to be discharged at high rates. LMO-based batteries are most suited for use in high rate applications.
Application
- Impact of gadolinium doping into the frustrated antiferromagnetic lithium manganese oxide spinel.: This study explores the effects of gadolinium doping on the properties of lithium manganese oxide spinel, enhancing its application in high-performance batteries (Saini et al., 2023).
- Oriented LiMn2O4 Particle Fracture from Delithiation-Driven Surface Stress.: This research investigates the fracture mechanisms of LiMn2O4 particles during delithiation, which is crucial for improving the durability and performance of lithium manganese oxide batteries (Warburton et al., 2020).
- Quantitative analysis of cation mixing and local valence states in LiNixMn2-xO4 using concurrent HARECXS and HARECES measurements.: This paper presents a detailed analysis of cation mixing and valence states in LiNixMn2-xO4, providing insights into the material′s structural and electrochemical properties for battery applications (Yamamoto et al., 2016).
- Doubling the capacity of lithium manganese oxide spinel by a flexible skinny graphitic layer.: This study demonstrates a method to double the capacity of lithium manganese oxide spinel through the application of a graphitic layer, highlighting significant improvements in battery capacity (Noh et al., 2014).
Legal Information
NANOMYTE is a registered trademark of NEI Corporation
related product
Product No.
Description
Pricing
Storage Class Code
11 - Combustible Solids
WGK
WGK 3
Flash Point(F)
Not applicable
Flash Point(C)
Not applicable
Regulatory Information
新产品
Choose from one of the most recent versions:
Already Own This Product?
Find documentation for the products that you have recently purchased in the Document Library.
Nano letters, 20(5), 3278-3283 (2020-04-18)
Rechargeable hydrogen gas batteries show promises for the integration of renewable yet intermittent solar and wind electricity into the grid energy storage. Here, we describe a rechargeable, high-rate, and long-life hydrogen gas battery that exploits a nanostructured lithium manganese oxide
Lithium and lithium ion batteries for applications in microelectronic devices
Journal of Power Sources, 286, 330-345 (2015)
Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.
Contact Technical Service