Skip to Content
Merck
CN
All Photos(1)

Documents

900438

Sigma-Aldrich

Super yellow light-emitting PPV copolymer

Synonym(s):

Livilux®, PDY-132

Sign Into View Organizational & Contract Pricing


About This Item

CAS Number:
UNSPSC Code:
12162002
NACRES:
NA.23

form

solid

Quality Level

mol wt

average Mn >400,000
average Mw >1,300,000

General description

Super yellow light emitting PPV copolymer can form a thin film of poly(1,4-phenylenevinylene) (PPV) with high efficiencies. It has conjugated polymers as the backbone that can be soluble in water upon the incorporation of lipophilic solubilizing linkers.

Application

Features:
  • soluble super yellow light-emitting PPV copolymer
  • excellent reproducibility
  • broad emission spectrum
  • very high efficiency
  • very low operation voltage/for PM 100000 cd/m2 pulsed <10 V
  • very long DC & AC lifetime

Typical performance measured in standard device stack (ITO/PEDOT: PSS 20 nm/PDY-132 80 nm/Ba 6 nm/Ag 150 nm):
  • max. efficiency: 11 Cd/A
  • V_on: 2.2 V
  • V @ 100 cd/m2: 3.0 V
  • V @ 1000 cd/m2: 4.3 V
  • max. power eff.: 10 lm/W
  • external quantum eff.: 5.3%
  • CIE1931 @ 100 cd/m2: (0.50, 0.49)
  • DC lifetime @ 100 cd/m2 @ RT: >>220000
  • AC lifetime @ 200 cd/m2 @ RT: 11000
PDY-132 can be used in the preparation of electroluminescent line material, which can be used for making line art by direct-write patterning. It can also be used as a fluorescent material with the absorption peak at 450 nm, that can be developed by blade coating on the substrates of the transfer printed micro-sized light emitting diodes (μLED).

Legal Information

Livilux is a registered trademark of Merck KGaA, Darmstadt, Germany

WGK

WGK 3

Flash Point(F)

Not applicable

Flash Point(C)

Not applicable


Certificates of Analysis (COA)

Search for Certificates of Analysis (COA) by entering the products Lot/Batch Number. Lot and Batch Numbers can be found on a product’s label following the words ‘Lot’ or ‘Batch’.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

Light-emitting polymers-The shape of things to come?
Burn PL and Samuel ID
Materials Today, 1(4), 3-5 (1998)
Transfer-printed micro-LED and polymer-based transceiver for visible light communications
Rae K, et al.
Optics Express, 26(24), 31474-31483 (2018)
Luminescent line art by direct-write patterning
Lindh EM, et al.
Light: Science & Applications, 5(3), e16050-e16050 (2016)

Related Content

Organic electronics utilizes organic conductors and semiconductors for applications in organic photovoltaics, organic light-emitting diodes, and organic field-effect transistors.

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service