Skip to Content
Merck
CN
All Photos(2)

Documents

Safety Information

900188

Sigma-Aldrich

Poly(N-isopropyl acrylamide)

NHS ester end functionalized, average Mn 5,000

Sign Into View Organizational & Contract Pricing

Synonym(s):
PNIPAM, polyNIPAM
Linear Formula:
C8H10NO4(C6H11NO)nH
UNSPSC Code:
12352200
NACRES:
NA.23

Quality Level

form

solid

mol wt

average Mn 5,000

storage temp.

2-8°C

Related Categories

Application

Poly(N-isopropyl acrylamide) (PolyNIPAM) is a stimuli-responsive polymer. This product features low polydispersity (PDI), which typically leads to better reproducibility in applications, and a terminal N-hydroxysuccinimide (NHS) functional group, allowing for rapid conjugation of biomolecules, small molecules, or other polymers. PolyNIPAM has been used in development of a variety of thermosensitive coated micro/nano materials, including thermoresponsive polymeric drug delivery systems.

WGK

WGK 3

Flash Point(F)

Not applicable

Flash Point(C)

Not applicable

Regulatory Information

新产品

Certificates of Analysis (COA)

Search for Certificates of Analysis (COA) by entering the products Lot/Batch Number. Lot and Batch Numbers can be found on a product’s label following the words ‘Lot’ or ‘Batch’.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

Avraham Halperin et al.
Langmuir : the ACS journal of surfaces and colloids, 28(48), 16623-16637 (2012-11-06)
Thermoresponsive tissue culture substrates based on PNIPAM brushes are used to harvest confluent cell sheets for tissue engineering. The prospect of clinical use imposes the utilization of culture medium free of bovine serum, thus suggesting conjugation with adhesion peptides containing
Umut Atakan Gurkan et al.
Advanced healthcare materials, 1(5), 661-668 (2012-11-28)
Stimuli responsive, smart interface materials are integrated with microfluidic technologies creating new functions for a broad range of biological and clinical applications by controlling the material and cell interactions. Local capture and on-demand local release of cells are demonstrated with
Shahrzad Rayatpisheh et al.
Macromolecular bioscience, 12(7), 937-945 (2012-04-27)
A new method for ultrathin grafting of pNIPAm on PDMS surfaces is introduced that employs plasma activation of the surface followed by thermal polymerization. This method is optimized for human primary SMC attachment and subsequent intact cell sheet detachment by
A C C Rotzetter et al.
Advanced materials (Deerfield Beach, Fla.), 24(39), 5352-5356 (2012-08-31)
Buildings can be effectively cooled by a bioinspired sweating-like action based on thermoresponsive hydrogels (PNIPAM), which press out their stored water when exceeding the lower critical solution temperature. The surface temperature is reduced by 15 °C compared to that of
Chenglin Yi et al.
Journal of colloid and interface science, 380(1), 90-98 (2012-05-29)
Self-assembled polymeric micelles can be used as efficient particulate emulsifiers. To explore the relationship between micellar structure and emulsification performance, pH- and temperature-responsive self-assembled micelles were prepared and used as emulsifiers, based on a novel grafted polymer poly(styrene-alt-maleic acid)-graft-poly(N-isopropyl acrylamide)

Articles

Professor Mitsuhiro Ebara provides insights on several types of smart nanofiber mesh systems that have been explored for different drug delivery purposes.

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service