Skip to Content
Merck
CN
All Photos(1)

Documents

791873

Sigma-Aldrich

Conductive silver printing ink, resistivity 5-6 Ω cm

Synonym(s):

Greatcell Solar®, Dyesol(R) DYAG50 conductive silver ink, Screen printable silver paste

Sign Into View Organizational & Contract Pricing


About This Item

UNSPSC Code:
12352103
NACRES:
NA.23

description

volume resistivity 5 - 6 Ω cm

Quality Level

Assay

75-85% solids basis

form

paste (white)

viscosity

13,000-17,000 mPa.s (at shear rate of 10 sec-1 at 25°C)

General description

Sheet Resistivity is 2.0 - 2.4 μΩ/ square / mil. (at a 180°C cure temperature)

Application

Use this Conductive Silver Ink to achieve exceptionally high conductivity at low cure temperatures when printing on a variety of substrates, including glass, polyesters (PET/PEN), and ITO/FTO coated substrates.
This Conductive Silver Printing Ink is a specially formulated ink which provides exceptionally high conductivity at low cure temperatures. This highly conductive ink provides extremely low resistance printed conducting tracks, essential for the photovoltaic applications. By providing the lowest track resistances of printed current collectors, this material is a key enabler in plastic electronics, such as, DSSC, OPV, and CdTe solar cells.

Legal Information

Product of Greatcell Solar Materials Pty Ltd.
GreatcellSolar is a registered trademark of Greatcell Solar Materials Pty Ltd.
Greatcell Solar is a registered trademark of Greatcell Solar

Pictograms

Exclamation markEnvironment

Signal Word

Warning

Hazard Statements

Hazard Classifications

Aquatic Acute 1 - Aquatic Chronic 1 - Eye Irrit. 2 - Skin Irrit. 2

WGK

WGK 3

Flash Point(F)

174.2 °F

Flash Point(C)

79 °C


Certificates of Analysis (COA)

Search for Certificates of Analysis (COA) by entering the products Lot/Batch Number. Lot and Batch Numbers can be found on a product’s label following the words ‘Lot’ or ‘Batch’.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

Metin Uz et al.
ACS applied materials & interfaces, 12(11), 13529-13539 (2020-02-23)
In this study, a simple microfluidic method, which can be universally applied to different rigid or flexible substrates, was developed to fabricate high-resolution, conductive, two-dimensional and three-dimensional microstructured graphene-based electronic circuits. The method involves controlled and selective filling of microchannels

Articles

The ability to pattern conductive electrodes is technologically relevant for several applications, including photovolatics, displays, sensors, and biomedical devices.

Small molecular weight organic semiconductors are promising for flexible transistor applications in next-gen soft electronics.

Dye-sensitized solar cells (DSCs) are 3rd generation solar cells combining the promise of high efficiency with low production costs.

Professors Tokito and Takeda share design principles and optimization protocols for organic electronic devices, focusing on flexibility and low cost.

See All

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service