Skip to Content
Merck
CN
All Photos(1)

Documents

791512

Sigma-Aldrich

Platinum paste, screen printable

Sign Into View Organizational & Contract Pricing

Synonym(s):
Greatcell Solar PT1 platinum paste, Pt paste, conductive paste
MDL number:
UNSPSC Code:
12352103
PubChem Substance ID:
NACRES:
NA.23

form

paste (Amber)

Quality Level

viscosity

2500-4500 mPa.s (Analysis carried out at 20°C with 20mm 4 degree cone/plate; 40 s-1)

storage temp.

2-8°C

InChI

1S/Pt

InChI key

BASFCYQUMIYNBI-UHFFFAOYSA-N

Related Categories

Application

PT1 Platinum Paste can be used in applications that require a highly transparent layer with high electrocatalytic activity.

PT1 Platinum Paste is oil-based and formulated to be applied using a screen printer; providing films with excellent uniformity; performance and reproducibility; and can be used for DSSC polot production.

After drying; this paste must be fired at or above 420°C. This results in uniformly distributed platinum nanoclusters; providing good transparency and high catalytic activity for the electrochemical reduction of I3- to I-.


Suggested Mesh Screen: 100T

Legal Information

Product of Greatcell Solar Materials Pty Ltd.
Greatcell Solar is a registered trademark of Greatcell Solar Materials Pty Ltd

Pictograms

Health hazardCorrosion

Signal Word

Danger

Hazard Statements

Hazard Classifications

Eye Dam. 1 - Resp. Sens. 1 - Skin Irrit. 2 - Skin Sens. 1

WGK

WGK 1

Flash Point(F)

194.0 °F

Flash Point(C)

90 °C


Certificates of Analysis (COA)

Search for Certificates of Analysis (COA) by entering the products Lot/Batch Number. Lot and Batch Numbers can be found on a product’s label following the words ‘Lot’ or ‘Batch’.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

Articles

Dye-sensitized solar cells (DSCs) are 3rd generation solar cells combining the promise of high efficiency with low production costs.

While dye sensitization as the basis for color photography has been accepted for a very long time,1 attempts to use this principle for the conversion of solar light to electricity generally had resulted only in very low photocurrents, below 100 nA/cm

Professors Tokito and Takeda share design principles and optimization protocols for organic electronic devices, focusing on flexibility and low cost.

Progress in solution-processed functional materials leads to thin-film optoelectronic devices for industrial and consumer electronics.

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service