Skip to Content

Dear Customer:

The current international situation is complex and volatile, and uncertain tariff policies may potentially impact our product prices. Given these uncertainties, we value your understanding regarding order-related matters.

If you decide to place an order during this period, we reserve the right to adjust the price based on the evolving situation. We understand that market changes may cause inconvenience. We will negotiate with you if there’s a significant price fluctuation due to tariff policy changes before the order’s actual delivery, and in such cases we may adjust or cancel the order as necessary.

Merck
CN
All Photos(1)

Key Documents

Safety Information

772380

Sigma-Aldrich

DTS(FBTTh2)2

Synonym(s):

7,7′-[4,4-Bis(2-ethylhexyl)-4H-silolo[3,2-b:4,5-b′]dithiophene-2,6-diyl]bis[6-fluoro-4-(5′-hexyl-[2,2′-bithiophen]-5-yl)benzo[c][1,2,5]thiadiazole], F-DTS, p-DTS(FBTTh2)2

Sign Into View Organizational & Contract Pricing

Select a Size

25 G
CN¥852.42
100 G
CN¥2,903.41
250 G
CN¥6,381.78
1 KG
CN¥17,876.60

CN¥852.42


Available to ship onApril 14, 2025Details


Request a Bulk Order

Select a Size

Change View
25 G
CN¥852.42
100 G
CN¥2,903.41
250 G
CN¥6,381.78
1 KG
CN¥17,876.60

About This Item

Empirical Formula (Hill Notation):
C64H72F2N4S8Si
Molecular Weight:
1219.89
MDL number:
UNSPSC Code:
12352103
PubChem Substance ID:
NACRES:
NA.23

CN¥852.42


Available to ship onApril 14, 2025Details


Request a Bulk Order

form

solid

solubility

chlorobenzene: 0.3-0.5% at 80 °C
dichlorobenzene: 0.3-0.5% at 80 °C
chloroform: soluble(lit.)
dichlorobenzene: soluble(lit.)

λmax

590 nm in chloroform

SMILES string

CCCCCCc1ccc(s1)-c2ccc(s2)-c3cc(F)c(-c4cc5c(s4)-c6sc(cc6[Si]5(CC(CC)CCCC)CC(CC)CCCC)-c7c(F)cc(-c8ccc(s8)-c9ccc(CCCCCC)s9)c%10nsnc7%10)c%11nsnc3%11

InChI

1S/C64H72F2N4S8Si/c1-7-13-17-19-23-41-25-27-49(71-41)51-31-29-47(73-51)43-33-45(65)57(61-59(43)67-77-69-61)53-35-55-63(75-53)64-56(79(55,37-39(11-5)21-15-9-3)38-40(12-6)22-16-10-4)36-54(76-64)58-46(66)34-44(60-62(58)70-78-68-60)48-30-32-52(74-48)50-28-26-42(72-50)24-20-18-14-8-2/h25-36,39-40H,7-24,37-38H2,1-6H3

InChI key

LNMKMESEJYZMDZ-UHFFFAOYSA-N

Compare Similar Items

View Full Comparison

Show Differences

1 of 4

This Item
SH2831SH2731SH2631
Gene Information

Gene Information

Gene Information

Gene Information

storage temp.

−70°C

storage temp.

−70°C

storage temp.

−70°C

storage temp.

−70°C

Quality Level

200

Quality Level

200

Quality Level

200

Quality Level

200

General description

DTS(FBTTh2)2 is a conductive polymer that can be used as a donor molecule. It has a narrow band gap and shows a maximum power conversion efficiency of 7.0%. Its photostability is more than that of P3HT.[1][2]

Application

DTS(FBTTh2)2 can be used as a conjugating polymer that forms a donor-acceptor system with acceptor molecules such as perylene diimide, PC71BM and other fullerenes for the fabrication of bulk-heterojunction based solar cells.[3][4][5]
Narrow band gap material for high-efficiency organic solar cells (OPVs) application
OPV Device Structure: ITO/MoOx/DTS(PTTh2)2: PC70BM/Al
  • JSC = 12.8 mA/cm2
  • VOC = 0.81 V
  • FF = 0.68
  • PCE = 7.0%

Storage Class Code

11 - Combustible Solids

WGK

WGK 3

Flash Point(F)

Not applicable

Flash Point(C)

Not applicable

Regulatory Information

新产品

Choose from one of the most recent versions:

Certificates of Analysis (COA)

Lot/Batch Number

Don't see the Right Version?

If you require a particular version, you can look up a specific certificate by the Lot or Batch number.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

Barium: an efficient cathode layer for bulk-heterojunction solar cells
Gupta V, et al.
Scientific reports, 3, 1965-1965 (2013)
Effects of Solvent Additives on Morphology, Charge Generation, Transport, and Recombination in Solution-Processed Small-Molecule Solar Cells
Kyaw AKK, et al.
Advanced Energy Materials, 4(7), 1301469-1301469 (2014)
Relationship between photostability and nanostructures in DTS (FBTTh2) 2: fullerene bulk-heterojunction films
Yamane S, et al.
Solar Energy Materials and Solar Cells, 151, 96-101 (2016)
A High-Performing Solution-Processed Small Molecule: Perylene Diimide Bulk Heterojunction Solar Cell
Sharenko A, et al.
Advanced Materials, 25(32), 4403-4406 (2013)
Enhanced Efficiency Parameters of Solution-Processable Small-Molecule Solar Cells Depending on ITO Sheet Resistance
Wang DH, et al.
Advanced Energy Materials, 3(9), 1161-1165 (2013)

Articles

Solution-processed organic photovoltaic devices (OPVs) have emerged as a promising clean energy generating technology due to their ease of fabrication, potential to enable low-cost manufacturing via printing or coating techniques, and ability to be incorporated onto light weight, flexible substrates.

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service