Skip to Content

尊敬的客户:

目前国际形势复杂多变,关税政策尚不明朗,这可能对我们的产品价格产生一定影响。在此情况下,我们希望就订单事宜与您进行友好沟通。

基于当前的不确定性,如果您选择在此期间下单,我们将保留根据实际情况调整价格的权利。同时,我们也理解市场变化可能给您带来的困扰,因此如果在订单实际发货前因关税政策变动导致价格出现较大波动,默克将与您进行协商讨论并视情况对订单进行调整或取消。

Merck
CN
All Photos(1)

Key Documents

Safety Information

769495

Sigma-Aldrich

Cobalt(II) chloride hexahydrate

≥97%

Synonym(s):

Cobaltous chloride hexahydrate

Sign Into View Organizational & Contract Pricing

Select a Size

100 G
¥770.90

¥770.90


Available to ship on2025年4月25日Details


Request a Bulk Order

Select a Size

Change View
100 G
¥770.90

About This Item

Linear Formula:
CoCl2 · 6H2O
CAS Number:
Molecular Weight:
237.93
EC Number:
MDL number:
UNSPSC Code:
12352302
PubChem Substance ID:
NACRES:
NA.23

form:
solid

¥770.90


Available to ship on2025年4月25日Details


Request a Bulk Order

vapor pressure

40 mmHg ( 0 °C)

Quality Level

Assay

≥97%
97.0-102.0% (KT)

form

solid

anion traces

nitrate (NO3-): ≤0.01%
sulfate (SO42-): ≤0.007%

cation traces

Fe: ≤0.005%
Ni: ≤0.15%
Pb: ≤0.002%
Zn: ≤0.05%

SMILES string

O.O.O.O.O.O.Cl[Co]Cl

InChI

1S/2ClH.Co.6H2O/h2*1H;;6*1H2/q;;+2;;;;;;/p-2

InChI key

GFHNAMRJFCEERV-UHFFFAOYSA-L

Looking for similar products? Visit Product Comparison Guide

Related Categories

Compare Similar Items

View Full Comparison

Show Differences

1 of 4

This Item
31277202185V800125
form

solid

form

solid

form

crystals or chunks

form

solid

assay

≥97%, 97.0-102.0% (KT)

assay

98-102%

assay

-

assay

≥98%

Quality Level

100

Quality Level

200

Quality Level

200

Quality Level

-

vapor pressure

40 mmHg ( 0 °C)

vapor pressure

40 mmHg ( 0 °C)

vapor pressure

40 mmHg ( 0 °C)

vapor pressure

40 mmHg ( 0 °C)

anion traces

nitrate (NO3-): ≤0.01%, sulfate (SO42-): ≤0.007%

anion traces

nitrate (NO3-): ≤100 mg/kg, sulfate (SO42-): ≤50 mg/kg

anion traces

-

anion traces

sulfate (SO42-): ≤0.03%

cation traces

Ni: ≤0.15%, Zn: ≤0.05%, Fe: ≤0.005%

cation traces

Ca: ≤50 mg/kg, Cu: ≤20 mg/kg, Fe: ≤50 mg/kg, K: ≤50 mg/kg, Mg: ≤10 mg/kg, Mn: ≤50 mg/kg, Na: ≤100 mg/kg, Ni: ≤500 mg/kg, Pb: ≤5 mg/kg, Zn: ≤25 mg/kg

cation traces

-

cation traces

Fe: ≤0.01%

General description

Cobalt(II) chloride hexahydrate, a hydrated form of cobalt chloride, is employed in electroplating and catalyst preparation. It serves as a precursor for synthesizing electrode materials for lithium-ion batteries and acts as a catalyst in a range of organic reactions, including acetylation, tosylation of alcohols, and condensation reactions.

Application

Cobalt(II) chloride hexahydrate can be used as:      
  • An additive to the electron transport layer (ETL) in perovskite solar cells to improve their performance, particularly by reducing energy losses and increasing the open-circuit voltage.      
  • A cobalt source for doping ZnO nanostructures. The incorporation of cobalt ions into the ZnO matrix is crucial for modifying its electronic and optical properties.      
  • A precursor to modify cobalt metal-organic framework (Co-MOF) derived carbon microspheres for application as anode materials in lithium-ion batteries.

Analysis Note

Substances not precipitated by ammonium sulfide (as sulphates) ≤ 0.3 %

Signal Word

Danger

Hazard Classifications

Acute Tox. 4 Oral - Aquatic Acute 1 - Aquatic Chronic 1 - Carc. 1B Inhalation - Eye Dam. 1 - Muta. 2 - Repr. 1B - Resp. Sens. 1 - Skin Sens. 1

Storage Class Code

6.1D - Non-combustible acute toxic Cat.3 / toxic hazardous materials or hazardous materials causing chronic effects

WGK

WGK 3

Flash Point(F)

Not applicable

Flash Point(C)

Not applicable

Regulatory Information

危险化学品

Choose from one of the most recent versions:

Certificates of Analysis (COA)

Lot/Batch Number

Don't see the Right Version?

If you require a particular version, you can look up a specific certificate by the Lot or Batch number.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

One-step synthesis of cobalt and nitrogen co-doped carbon nanotubes and their catalytic activity for the oxygen reduction reaction
Fu, S., et al.
Journal of Material Chemistry A, 3, 12718-12722 (2015)
Sebastian Klemenz et al.
ChemSusChem, 11(18), 3150-3156 (2018-07-27)
High-performance catalysts for the oxygen-evolution reaction in water electrolysis are usually based on expensive and rare elements. Herein, mixed-metal borides are shown to be competitive with established electrocatalysts like noble metal oxides and other transition-metal(oxide)-based catalysts. Iron incorporation into nanoscale
Excellent lithium ion storage property of porous MnCo2O4 nanorods
Zeng, P., et al.
Royal Society of Chemistry Advances, 6, 23074-23084 (2016)
Hyeohn Kim et al.
ACS nano, 15(1), 979-988 (2020-12-18)
Chiral inorganic nanomaterials have revealed opportunities in various fields owing to their strong light-matter interactions. In particular, chiral metal oxide nanomaterials that can control light and biochemical reactions have been highlighted due to their catalytic activity and biocompatibility. In this
Electroplating and characterization of cobalt-nickel-iron and nickel-iron for magnetic microsystems applications
Rasmussen, FE., et al.
Sensors and actuators A, Physical, 92, 242-248 (2001)

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service