Skip to Content
Merck
CN
All Photos(3)

Documents

757349

Sigma-Aldrich

Fluoroethylene carbonate

greener alternative

99%

Synonym(s):

4-Fluoro-1,3-dioxolan-2-one, FEC

Sign Into View Organizational & Contract Pricing


About This Item

Empirical Formula (Hill Notation):
C3H3FO3
CAS Number:
Molecular Weight:
106.05
EC Number:
MDL number:
UNSPSC Code:
26111700
PubChem Substance ID:
NACRES:
NA.23

Quality Level

Assay

99%

form

solid

greener alternative product characteristics

Design for Energy Efficiency
Learn more about the Principles of Green Chemistry.

sustainability

Greener Alternative Product

bp

212 °C

mp

18-23 °C

density

1.485 g/cm3

application(s)

battery manufacturing

greener alternative category

storage temp.

2-8°C

SMILES string

FC1COC(=O)O1

InChI

1S/C3H3FO3/c4-2-1-6-3(5)7-2/h2H,1H2

InChI key

SBLRHMKNNHXPHG-UHFFFAOYSA-N

Looking for similar products? Visit Product Comparison Guide

General description

We are committed to bringing you Greener Alternative Products, which adhere to one or more of The 12 Principles of Greener Chemistry. This product has been enhanced for energy efficiency. Find details here.

Application

Fluoroethylene carbonate (FEC) can be used as a co-solvent for the formation of electrolytes, which can exhibit a reversible capacity of 2.5 Ah g−1. It can be further used in the fabrication of lithium-ion batteries. FEC enables the formation of thin, smooth and stable passive solid electrolyte interphase (SEI) layer, which is insoluble in the electrolyte, in turn increasing the cycling efficiency and discharge capacity retention of the secondary battery.

Pictograms

Exclamation mark

Signal Word

Warning

Hazard Statements

Hazard Classifications

Acute Tox. 4 Oral - Eye Irrit. 2 - Skin Irrit. 2 - Skin Sens. 1

WGK

WGK 1

Flash Point(F)

Not applicable

Flash Point(C)

Not applicable


Certificates of Analysis (COA)

Search for Certificates of Analysis (COA) by entering the products Lot/Batch Number. Lot and Batch Numbers can be found on a product’s label following the words ‘Lot’ or ‘Batch’.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

Xiaoming Xu et al.
Nature communications, 8(1), 460-460 (2017-09-08)
The abundance of sodium resources indicates the potential of sodium-ion batteries as emerging energy storage devices. However, the practical application of sodium-ion batteries is hindered by the limited electrochemical performance of electrode materials, especially at the anode side. Here, we
Shang-Chieh Hou et al.
Scientific reports, 8(1), 12695-12695 (2018-08-25)
Mechanochemical synthesis of Si/Cu3Si-based composite as negative electrode materials for lithium ion battery is investigated. Results indicate that CuO is decomposed and alloyed with Si forming amorphous Cu-Si solid solution due to high energy impacting during high energy mechanical milling
Aaron W Hummel et al.
Plant biotechnology journal, 16(7), 1275-1282 (2017-12-10)
Effective weed control can protect yields of cassava (Manihot esculenta) storage roots. Farmers could benefit from using herbicide with a tolerant cultivar. We applied traditional transgenesis and gene editing to generate robust glyphosate tolerance in cassava. By comparing promoters regulating
Hadeer M Aboshady et al.
PloS one, 14(6), e0218719-e0218719 (2019-06-21)
Gastrointestinal nematodes (GIN) are a major constraint for small ruminant production. Due to the rise of anthelmintic resistance throughout the world, alternative control strategies are needed. The development of GIN resistance breeding programs is a promising strategy. However, a better
Rongzhen Zhong et al.
Animals : an open access journal from MDPI, 9(3) (2019-03-23)
For the study, forty lambs were weighed and assigned into two treatments to determine the effects of feeding garlic powder on growth performance, rumen fermentation, and the health status of lambs infected with gastrointestinal nematodes (GINs). The lambs were fed

Articles

Experts discuss challenges and production processes of nickel-rich layered oxide cathode materials in energy storage systems.

Solid oxide fuel cells and electrolyzers show potential for chemical-to-electrical energy conversion, despite early development stages.

Li-ion batteries are currently the focus of numerous research efforts with applications designed to reduce carbon-based emissions and improve energy storage capabilities.

Lithium-ion batteries offer high energy density and cyclic performance for portable electronic devices.

See All

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service