Skip to Content
Merck
CN
All Photos(3)

Documents

Safety Information

741027

Sigma-Aldrich

2,5-Bis(trimethylstannyl)-thieno[3,2-b]thiophene

97%

Sign Into View Organizational & Contract Pricing

Empirical Formula (Hill Notation):
C12H20S2Sn2
Molecular Weight:
465.84
MDL number:
UNSPSC Code:
12352103
PubChem Substance ID:
NACRES:
NA.23

Quality Level

Assay

97%

form

powder or crystals

mp

127-132 °C

SMILES string

C[Sn](C)(C)c1cc2sc(cc2s1)[Sn](C)(C)C

InChI

1S/C6H2S2.6CH3.2Sn/c1-3-7-6-2-4-8-5(1)6;;;;;;;;/h1-2H;6*1H3;;

InChI key

HDZULVYGCRXVNQ-UHFFFAOYSA-N

General description

2,5-Bis(trimethylstannyl)-thieno[3,2-b]thiophene is a conducting polymer that can be used in the formation of the hole transporting material (HTM) with improved charge mobility. It is a majorly utilized as a copolymer in the polymerization of new thieno(3,2-b)thiophene based polymers.

Application

2,5-Bis(trimethylstannyl)-thieno[3,2-b]thiophene can be used as a copolymer in the synthesis of thiophene based materials for the fabrication of organic electronic devices such as organic field effect transistors (OFETs), organic thin film transistors(OTFTs) and organic photovoltaic cells (OPVs).
2,5-Bis(trimethylstannyl)-thieno[3,2-b]thiophene is a synthetic intermediate, which can be used in the synthesis of polythiophenes based fluorinated polymers for the optoelectronic applications. It can also be used in the synthesis of PDBT-co-TT via Still coupling polymerization for the fabrication of organic thin film transistors (OTFTs)and photovoltaic devices.

Pictograms

Skull and crossbonesEnvironment

Signal Word

Danger

Hazard Statements

Hazard Classifications

Acute Tox. 1 Dermal - Acute Tox. 2 Inhalation - Acute Tox. 2 Oral - Aquatic Acute 1 - Aquatic Chronic 1

WGK

WGK 3

Flash Point(F)

Not applicable

Flash Point(C)

Not applicable

Regulatory Information

新产品

Certificates of Analysis (COA)

Search for Certificates of Analysis (COA) by entering the products Lot/Batch Number. Lot and Batch Numbers can be found on a product’s label following the words ‘Lot’ or ‘Batch’.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

Thienoisoindigo-based copolymer with fused thieno (3, 2-b) thiophene as a donor in thin film transistor applications with high performance
Chen C, et al.
Journal of Material Chemistry C, 3(1), 33-36 (2015)
Dialkyl-Substituted Thieno [3, 2-b] thiophene-Based Polymers Containing 2, 2 `-Bithiophene, Thieno [3, 2-b] thiophene, and Ethynylene Spacers
San Miguel L and Matzger AJ
Macromolecules, 40(26), 9233-9237 (2007)
Using Molecular Design to Increase Hole Transport: Backbone Fluorination in the Benchmark Material Poly (2, 5-bis (3-alkylthiophen-2-yl) thieno [3, 2-b]-thiophene (pBTTT)
Boufflet P, et al.
Advances in Functional Materials, 25(45), 7038-7048 (2015)
A High Mobility P-Type DPP-Thieno [3, 2-b] thiophene Copolymer for Organic Thin-Film Transistors
Li Y, et al.
Advanced Materials, 22(43), 4862-4866 (2010)
Hugo Bronstein et al.
Journal of the American Chemical Society, 133(10), 3272-3275 (2011-02-22)
We report the synthesis and polymerization of a novel thieno[3,2-b]thiophene-diketopyrrolopyrrole-based monomer. Copolymerization with thiophene afforded a polymer with a maximum hole mobility of 1.95 cm(2) V(-1) s(-1), which is the highest mobility from a polymer-based OFET reported to date. Bulk-heterojunction

Articles

Organic electronics promise renewable energy solutions surpassing silicon-based tech.

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service