Skip to Content

尊敬的客户:

目前国际形势复杂多变,关税政策尚不明朗,这可能对我们的产品价格产生一定影响。在此情况下,我们希望就订单事宜与您进行友好沟通。

基于当前的不确定性,如果您选择在此期间下单,我们将保留根据实际情况调整价格的权利。同时,我们也理解市场变化可能给您带来的困扰,因此如果在订单实际发货前因关税政策变动导致价格出现较大波动,默克将与您进行协商讨论并视情况对订单进行调整或取消。

Merck
CN

730270

Sigma-Aldrich

Poly(ethylene glycol) methyl ether acrylate

average Mn 2,000, acrylate, methoxy, MEHQ as inhibitor, chemical modification reagent polymerization reactions

Synonym(s):

Polyethylene glycol, Acryl-PEG, Methoxy PEG acrylate, Methoxy poly(ethylene glycol) monoacrylate, Poly(ethylene glycol) monomethyl ether monoacrylate, mPEG-acrylate

Sign Into View Organizational & Contract Pricing

Select a Size

1 G
¥1,399.61

¥1,399.61


Estimated to ship on2025年6月26日Details


Request a Bulk Order

Select a Size

Change View
1 G
¥1,399.61

About This Item

Linear Formula:
H2C=CHCO2(CH2CH2O)nCH3
CAS Number:
MDL number:
UNSPSC Code:
12162002
NACRES:
NA.23

¥1,399.61


Estimated to ship on2025年6月26日Details


Request a Bulk Order

Product Name

Poly(ethylene glycol) methyl ether acrylate, average Mn 2,000, contains MEHQ as inhibitor

form

solid

Quality Level

mol wt

average Mn 2,000

contains

MEHQ as inhibitor

reaction suitability

reagent type: chemical modification reagent
reaction type: Polymerization Reactions

transition temp

Tm 49-54 °C

density

1.09 g/mL at 25 °C (lit.)

Mw/Mn

<1.1

Ω-end

acrylate

Looking for similar products? Visit Product Comparison Guide

Compare Similar Items

View Full Comparison

Show Differences

1 of 4

This Item
447951447935730289
polymer architecture

shape: linear
functionality: monofunctional

polymer architecture

shape: linear
functionality: monofunctional

polymer architecture

shape: linear
functionality: monofunctional

polymer architecture

shape: linear
functionality: monofunctional

form

solid

form

solid

form

-

form

solid

Quality Level

100

Quality Level

200

Quality Level

200

Quality Level

-

mol wt

average Mn 2,000

mol wt

average Mn 950

mol wt

average Mn 300

mol wt

average Mn 5,000

α-end

methoxy

α-end

methoxy

α-end

methoxy

α-end

methoxy

Ω-end

acrylate

Ω-end

methacrylate

Ω-end

methacrylate

Ω-end

acrylate

Preparation Note

Synthesized with an initial concentration of ≤1,500 ppm MEHQ

Storage Class Code

11 - Combustible Solids

WGK

WGK 3


Choose from one of the most recent versions:

Certificates of Analysis (COA)

Lot/Batch Number

Don't see the Right Version?

If you require a particular version, you can look up a specific certificate by the Lot or Batch number.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

Articles

Biofouling control essential for device performance and safety; minimize accumulation of biomolecules and bioorganisms.

Progress in biotechnology fields such as tissue engineering and drug delivery is accompanied by an increasing demand for diverse functional biomaterials. One class of biomaterials that has been the subject of intense research interest is hydrogels, because they closely mimic the natural environment of cells, both chemically and physically and therefore can be used as support to grow cells. This article specifically discusses poly(ethylene glycol) (PEG) hydrogels, which are good for biological applications because they do not generally elicit an immune response. PEGs offer a readily available, easy to modify polymer for widespread use in hydrogel fabrication, including 2D and 3D scaffold for tissue culture. The degradable linkages also enable a variety of applications for release of therapeutic agents.

Designing biomaterial scaffolds mimicking complex living tissue structures is crucial for tissue engineering and regenerative medicine advancements.

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service