Skip to Content
Merck
CN
All Photos(2)

Documents

718149

Sigma-Aldrich

exo-5-Norbornenecarboxylic acid

97%

Sign Into View Organizational & Contract Pricing

Synonym(s):
(1R,2S,4R)-Bicyclo[2.2.1]hept-5-ene-2-carboxylic acid, NC
Empirical Formula (Hill Notation):
C8H10O2
CAS Number:
Molecular Weight:
138.16
MDL number:
UNSPSC Code:
12162002
PubChem Substance ID:
NACRES:
NA.23

Quality Level

Assay

97%

form

solid

mp

40-44 °C

SMILES string

OC(=O)[C@@H]1C[C@@H]2C[C@H]1C=C2

InChI

1S/C8H10O2/c9-8(10)7-4-5-1-2-6(7)3-5/h1-2,5-7H,3-4H2,(H,9,10)/t5-,6+,7+/m0/s1

InChI key

FYGUSUBEMUKACF-RRKCRQDMSA-N

Related Categories

General description

Exo-5-norbornenecarboxylic acid is a bicyclic compound that has potential applications in the field of material science due to its unique chemical properties. It is a versatile building block for the synthesis of various functional materials, including polymers, dendrimers, and self-assembled monolayers. It can be used to modify surfaces or to functionalize nanoparticles, influencing their optical, magnetic, or electronic properties. It is also often used in ring-opening metathesis polymerization reactions to form polymers with controlled molecular weight and structure. Additionally, exo-5-norbornenecarboxylic acid can function as a ligand for coordination chemistry and catalysis.

Application

Exo-5-norbornenecarboxylic acid can be used as:
  • A starting material in the synthesis of the metathesis polymer via a ring-opening metathesis polymerization (ROMP) reaction of the ester of exo-5-norbornenecarboxylic acid and 1,1′-bi-2-naphthol.
  • A monomer in the preparation of thin films via surface-initiated polymerization process. The resulting thin film serves as a template for selective deposition and etching of metal oxides, which is of significant importance in the microelectronic industry.
exo-5-Norbornenecarboxylic acid can be used as a precursor in the synthesis of:
  • Different crosslinkers for ring-opening metathesis polymerization.
  • Norbornene-functionalized monomers, which are used to make poly(norbornene)s via ring-opening metathesis polymerization (ROMP).
  • Hydrolytically cleavable and hydrolytically stable functionalized macromonomers for hydrogel preparation.

Pictograms

Exclamation mark

Signal Word

Warning

Hazard Statements

Hazard Classifications

Eye Irrit. 2 - Skin Irrit. 2 - STOT SE 3

Target Organs

Respiratory system

WGK

WGK 3

Flash Point(F)

>230.0 °F

Flash Point(C)

> 110 °C


Certificates of Analysis (COA)

Search for Certificates of Analysis (COA) by entering the products Lot/Batch Number. Lot and Batch Numbers can be found on a product’s label following the words ‘Lot’ or ‘Batch’.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

Jürgen Herrler et al.
Magnetic resonance in medicine, 85(6), 3140-3153 (2021-01-06)
To mitigate spatial flip angle (FA) variations under strict specific absorption rate (SAR) constraints for ultra-high field MRI using a combination of universal parallel transmit (pTx) pulses and fast subject-specific optimization. Data sets consisting of B0 , B 1 +
Wenjun Zheng et al.
BMC structural biology, 9, 45-45 (2009-07-14)
It is increasingly recognized that protein functions often require intricate conformational dynamics, which involves a network of key amino acid residues that couple spatially separated functional sites. Tremendous efforts have been made to identify these key residues by experimental and
Christopher L McGann et al.
Macromolecular bioscience, 16(1), 129-138 (2015-10-06)
A range of chemical strategies have been used for crosslinking recombinant polypeptide hydrogels, although only a few have employed photocrosslinking approaches. Here, we capitalize on the novel insect protein, resilin, and the versatility of click reactions to introduce a resilin-like
Stefano Longhi et al.
Optics letters, 45(7), 1962-1965 (2020-04-03)
Multimode interference (MMI) and self-imaging are important phenomena of diffractive optics with major applications in signal processing, beam shaping, and optical sensing. Such phenomena generally arise from interference of normal modes in lossless dielectric guiding structures; however, the impact of
Shuonan Chen et al.
PLoS computational biology, 17(3), e1008256-e1008256 (2021-03-09)
Modern spatial transcriptomics methods can target thousands of different types of RNA transcripts in a single slice of tissue. Many biological applications demand a high spatial density of transcripts relative to the imaging resolution, leading to partial mixing of transcript

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service