Skip to Content
Merck
CN

674273

1-Nonanethiol

99%

Synonym(s):

1-Nonyl mercaptan, Mercaptan C9

Sign In to View Organizational & Contract Pricing.

Select a Size


About This Item

Linear Formula:
CH3(CH2)8SH
CAS Number:
Molecular Weight:
160.32
UNSPSC Code:
12352103
NACRES:
NA.23
PubChem Substance ID:
EC Number:
215-936-7
Beilstein/REAXYS Number:
1733631
MDL number:
Technical Service
Need help? Our team of experienced scientists is here for you.
Let Us Assist
Technical Service
Need help? Our team of experienced scientists is here for you.
Let Us Assist

Product Name

1-Nonanethiol, 99%

InChI

1S/C9H20S/c1-2-3-4-5-6-7-8-9-10/h10H,2-9H2,1H3

SMILES string

CCCCCCCCCS

InChI key

ZVEZMVFBMOOHAT-UHFFFAOYSA-N

assay

99%

refractive index

n20/D 1.455 (lit.)

bp

220 °C (lit.)

density

0.842 g/mL at 25 °C (lit.)

storage temp.

2-8°C

Looking for similar products? Visit Product Comparison Guide

Application

1-Nonanethiol is mainly used to form self-organized monolayers on gold, mercury, silver and platinum surfaces. These monolayers functionalize the surface atoms and improve the surface property of the composite.

General description

1-Nonanethiol is an alkanethiol, a stabilizer that forms a self-assembled monolayer (SAM) on a variety of substrates. It is used as a thiol based protective coating.

pictograms

Exclamation mark

signalword

Warning

Hazard Classifications

Eye Irrit. 2 - Skin Irrit. 2 - STOT SE 3

target_organs

Respiratory system

Storage Class

10 - Combustible liquids

wgk

WGK 3

flash_point_f

174.2 °F - closed cup

flash_point_c

79 °C - closed cup

ppe

Eyeshields, Gloves, type ABEK (EN14387) respirator filter


Choose from one of the most recent versions:

Certificates of Analysis (COA)

Lot/Batch Number

Don't see the Right Version?

If you require a particular version, you can look up a specific certificate by the Lot or Batch number.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

Through-bond and chain-to-chain coupling. Two pathways in electron tunneling through liquid alkanethiol monolayers on mercury electrodes.
Slowinski K, et al.
Journal of the American Chemical Society, 119(49), 11910-11919 (1997)
Pressure/temperature phase diagrams and superlattices of organically functionalized metal nanocrystal monolayers: the influence of particle size, size distribution, and surface passivant.
Heath JR, et al.
The Journal of Physical Chemistry B, 101(2), 189-197 (1997)
The stability of self-organized 1-nonanethiol-capped gold nanoparticle monolayer.
Jiang P, et al.
Journal of Physics D: Applied Physics, 34(15), 2255-2255 (2001)
Nanoscale reversible molecular extraction from a self-assembled monolayer on gold (111) by a scanning tunneling microscope.
Mizutani W, et al.
Langmuir, 14(25), 7197-7202 (1998)
Zuoti Xie et al.
Journal of the American Chemical Society, 141(1), 497-504 (2018-12-12)
Developing a clearer understanding of electron tunneling through molecules is a central challenge in molecular electronics. Here we demonstrate the use of mechanical stretching to distinguish orbital pathways that facilitate tunneling in molecular junctions. Our experiments employ junctions based on

Articles

Self-assembled monolayers (SAMs) have diverse applications; article compares benefits of alkylthiolates on gold SAM systems.

Recent research highlights tunable properties of inorganic nanoparticles, driving interest in optoelectronics.

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service