Skip to Content
Merck
CN
All Photos(3)

Documents

Safety Information

549797

Sigma-Aldrich

Acryloyl chloride

97.0%, contains <210 ppm MEHQ as stabilizer

Synonym(s):

2-Propenoyl chloride

Sign Into View Organizational & Contract Pricing


About This Item

Linear Formula:
CH2=CHCOCl
CAS Number:
Molecular Weight:
90.51
Beilstein:
635744
EC Number:
MDL number:
UNSPSC Code:
12162002
PubChem Substance ID:
NACRES:
NA.23

vapor density

>1 (vs air)

Quality Level

vapor pressure

1.93 psi ( 20 °C)

Assay

97.0%

contains

<210 ppm MEHQ as stabilizer

refractive index

n20/D 1.435 (lit.)

bp

72-76 °C (lit.)

density

1.114 g/mL at 25 °C (lit.)

storage temp.

2-8°C

SMILES string

ClC(=O)C=C

InChI

1S/C3H3ClO/c1-2-3(4)5/h2H,1H2

InChI key

HFBMWMNUJJDEQZ-UHFFFAOYSA-N

Looking for similar products? Visit Product Comparison Guide

Related Categories

General description

Acryloyl chloride is a derivative of acrylic acid and is widely used as a reactive monomer in the synthesis of various polymers with desired properties such as good transparency, flexibility, excellent mechanical and thermal properties, and resistance to moisture and chemicals. Acryloyl chloride contains both an acryloyl group (-CH2=CHC(O)Cl) and a chloride functional group (-Cl) in its structure. This combination of functional groups enables acryloyl chloride to undergo polymerization reactions and participate in copolymerization processes. In the field of polymers, acryloyl chloride is commonly used in the production of acrylic polymers, such as polyacrylates and polymethacrylates. These polymers have a wide range of applications, including coatings, adhesives, sealants, textiles, and biomedical materials.

Application

Acryloyl chloride can used as a monomer in the synthesis of:
  • Acrylic polymers via radical polymerization or copolymerization. These acrylic polymers can be tailored to possess the desired properties for biomedical coatings, including biocompatibility, adhesion to the device surface, and durability.
  • Poly(styrene-co-acryloyl chloride) copolymer by crosslinked networks with styrene. The resulting crosslinked polymer can then be functionalized or modified by various chemical reactions to introduce specific properties or functionalities desired for the application as a polymer support or an electrophilic scavenger resin.
  • Acrylamide-modified chitosan.
  • Ulvan acrylate macromer via esterification of hydroxyl groups of polysaccharides. This macromer can be used to prepare ulvan-based thermosensitive hydrogels.
  • Degradable peptide cross-linker by the acrylation of the amine groups of lysine residues and glutamine within peptide sequences.

Signal Word

Danger

Hazard Statements

Hazard Classifications

Acute Tox. 1 Inhalation - Acute Tox. 4 Oral - Eye Dam. 1 - Flam. Liq. 2 - Met. Corr. 1 - Skin Corr. 1A

Supplementary Hazards

WGK

WGK 3

Flash Point(F)

30.2 °F

Flash Point(C)

-1 °C

Regulatory Information

非剧毒-急性毒性1

Certificates of Analysis (COA)

Search for Certificates of Analysis (COA) by entering the products Lot/Batch Number. Lot and Batch Numbers can be found on a product’s label following the words ‘Lot’ or ‘Batch’.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

Soyeon Kim et al.
Biomacromolecules, 4(5), 1214-1223 (2003-09-10)
Hydrogels composed of N-isopropylacrylamide (NIPAAm) and acrylic acid (AAc) were prepared by redox polymerization with peptide cross-linkers to create an artificial extracellular matrix (ECM) amenable for testing hypotheses regarding cell proliferation and migration in three dimensions. Peptide degradable cross-linkers were
Andrea Morelli et al.
Carbohydrate polymers, 136, 1108-1117 (2015-11-18)
The present study is focused on the exploitation and conversion of sulphated polysaccharides obtained from waste algal biomass into high value added material for biomedical applications. ulvan, a sulphated polysaccharide extracted from green seaweeds belonging to Ulva sp. was selected
Jung Im Lee et al.
International journal of pharmaceutics, 373(1-2), 93-99 (2009-05-12)
Chitosan/Pluronic hydrogels were prepared to develop injectable depot systems for gene therapy to enhance local transgene expression at injection sites. Water-soluble chitosan and Pluronic were separately acrylated to prepare photo-crosslinkable polymers. A mixture of acrylated polymers was mixed with plasmid
Thomas N Chiesl et al.
Analytical chemistry, 77(3), 772-779 (2005-02-01)
We have created a family of water-soluble block copolymers of acrylamide and N-alkylacrylamides that are designed to selectively remove proteins from DNA via microchannel electrophoresis. It was hypothesized that the inclusion of hydrophobic subunits in the polymer chain, in sufficient
Iris Ben-David et al.
Applied radiation and isotopes : including data, instrumentation and methods for use in agriculture, industry and medicine, 58(2), 209-217 (2003-02-08)
An automated procedure for the radiosynthesis of the labeling synthon [11C]acryloyl chloride was developed and applied for labeling several N-acryl amides with carbon-11. [11C]-6-acrylamido-4-(3,4-dichloro-6-fluoroanilino)quinazoline (ML03), a novel PET biomarker targeting the epidermal growth factor receptor tyrosine kinase (EGFr-TK) in cancer

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service