Skip to Content
Merck
CN

520772

Rhodium(III) chloride hydrate

≥99.9% trace metals basis, crystalline

Synonym(s):

Rhodium trichloride hydrate

Sign In to View Organizational & Contract Pricing.

Select a Size


About This Item

Linear Formula:
RhCl3 · xH2O
CAS Number:
Molecular Weight:
209.26 (anhydrous basis)
NACRES:
NA.22
PubChem Substance ID:
UNSPSC Code:
12161600
EC Number:
233-165-4
MDL number:
Technical Service
Need help? Our team of experienced scientists is here for you.
Let Us Assist
Technical Service
Need help? Our team of experienced scientists is here for you.
Let Us Assist

Product Name

Rhodium(III) chloride hydrate, crystalline, ≥99.9% trace metals basis

Quality Level

InChI key

HSSMNYDDDSNUKH-UHFFFAOYSA-K

InChI

1S/3ClH.H2O.Rh/h3*1H;1H2;/q;;;;+3/p-3

SMILES string

O.Cl[Rh](Cl)Cl

assay

≥99.9% trace metals basis

form

crystalline

composition

Rh, 38-43.5%

reaction suitability

core: rhodium
reagent type: catalyst

mp

100 °C (dec.) (lit.)

Looking for similar products? Visit Product Comparison Guide

Application

Rhodium(III) chloride hydrate (RhCl3. xH2O) can be used as a metal precursor in the synthesis of:
  • Rhodium-cobalt (Rh-Co) (a bimetallic catalyst) supported on silica for Fischer−Tropsch (FT) synthesis.
  • Rhodium (III) catalyst, N-2-(2,3,4,5 tetramethylcyclopentadienyl)benzyl-(l)-norephedrine rhodium(III) chloride for asymmetric ketone reduction.
  • Rh@CTF (covalent triazine frameworks) catalyst for the hydroformylation of 1-octene.

signalword

Danger

Hazard Classifications

Acute Tox. 4 Oral - Aquatic Acute 1 - Aquatic Chronic 1 - Eye Dam. 1 - Met. Corr. 1 - Muta. 2

Storage Class

8A - Combustible corrosive hazardous materials

wgk

WGK 3

flash_point_f

Not applicable

flash_point_c

Not applicable

ppe

dust mask type N95 (US), Eyeshields, Gloves


Choose from one of the most recent versions:

Certificates of Analysis (COA)

Lot/Batch Number

Don't see the Right Version?

If you require a particular version, you can look up a specific certificate by the Lot or Batch number.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

N-containing covalent organic frameworks as supports for rhodium as transition-metal catalysts in hydroformylation reactions
Pilaski M, et al.
Microporous and Mesoporous Materials : The Official Journal of the International Zeolite Association, 227(4), 219-227 (2016)
Silica-supported rhodium-cobalt catalysts for Fischer-Tropsch synthesis
Yan Z, et al.
Catalysis Today, 160(1), 39-43 (2011)
A new class of Rh (III) catalyst containing an aminoalcohol tethered to a tetramethylcyclopentadienyl group for asymmetric transfer hydrogenation of ketones
Cross DJ, et al.
Tetrahedron Letters, 45(4), 843-846 (2004)
Adam J Biacchi et al.
ACS nano, 9(2), 1707-1720 (2015-01-30)
The shapes of noble metal nanoparticles directly impact their properties and applications, including in catalysis and plasmonics, and it is therefore important to understand how multiple distinct morphologies can be controllably synthesized. Solution routes offer powerful capabilities for shape-controlled nanoparticle

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service