Skip to Content
Merck
CN
All Photos(4)

Documents

Safety Information

517135

Sigma-Aldrich

Diethyl carbonate

greener alternative

anhydrous, ≥99%

Sign Into View Organizational & Contract Pricing

Synonym(s):
Diatol, Eufin, H-DEC
Linear Formula:
(C2H5O)2CO
CAS Number:
Molecular Weight:
118.13
Beilstein:
956591
EC Number:
MDL number:
UNSPSC Code:
12352100
PubChem Substance ID:
NACRES:
NA.22

grade

anhydrous

Quality Level

vapor density

4.1 (vs air)

vapor pressure

10 mmHg ( 23.8 °C)
59 mmHg ( 37.8 °C)

Assay

≥99%

greener alternative product characteristics

Less Hazardous Chemical Syntheses
Safer Solvents and Auxiliaries
Design for Degradation
Learn more about the Principles of Green Chemistry.

sustainability

Greener Alternative Product

impurities

<0.002% water
<0.005% water (100 mL)

refractive index

n20/D 1.384 (lit.)

bp

126-128 °C (lit.)

mp

−43 °C (lit.)

solubility

water: insoluble

density

0.975 g/mL at 25 °C (lit.)

greener alternative category

SMILES string

O=C(OCC)OCC

InChI

1S/C5H10O3/c1-3-7-5(6)8-4-2/h3-4H2,1-2H3

InChI key

OIFBSDVPJOWBCH-UHFFFAOYSA-N

Looking for similar products? Visit Product Comparison Guide

General description

Diethyl carbonate is an dialkylcarbonate. The synthesis of diethyl carbonate (DEC) from urea and ethanol has been investigated.
We are committed to bringing you Greener Alternative Products, which adhere to one or more of The 12 Principles of Greener Chemistry. This product is used as a greener reagent. Click here for more information.

Application

Diethyl carbonate may be used in the following studies:
  • Synthesis of β-enamino esters.
  • Synthesis of carbamates and unsymmetrical alkyl carbonates, via reaction with aliphatic amines or alcohols by using a hybrid organic-inorganic material prepared by anchoring TBD to MCM-41 silica.
  • As solvent in ruthenium catalyzed direct functionalisation of arene C-H bonds by aryl halides.
  • To compose the commercial liquid electrolyte for lithium ion batteries.
  • Homogeneous alkoxycarbonylation of cellulose.

Features and Benefits

Greener chemical

Pictograms

Flame

Signal Word

Warning

Hazard Statements

Hazard Classifications

Flam. Liq. 3

WGK

WGK 1

Flash Point(F)

closed cup

Flash Point(C)

closed cup

Personal Protective Equipment

dust mask type N95 (US), Eyeshields, Gloves

Regulatory Information

危险化学品

Certificates of Analysis (COA)

Search for Certificates of Analysis (COA) by entering the products Lot/Batch Number. Lot and Batch Numbers can be found on a product’s label following the words ‘Lot’ or ‘Batch’.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

A versatile route to β-enamino esters by acylation of lithium enamines with diethyl carbonate or benzyl chloroformate.
Bartoli G, et al.
Tetrahedron, 51(31), 8613-8622 (1995)
Catalytic activity of MCM-41-TBD in the selective preparation of carbamates and unsymmetrical alkyl carbonates from diethyl carbonate.
Carloni S, et al.
J. Catal., 205(1), 199-204 (2002)
Sara R Labafzadeh et al.
ChemSusChem, 8(1), 77-81 (2014-11-08)
Dialkylcarbonates are viewed as low-cost, low-toxicity reagents, finding application in many areas of green chemistry. Homogeneous alkoxycarbonylation of cellulose was accomplished by applying dialkycarbonates (dimethyl and diethyl carbonate) in the ionic liquid-electrolyte trioctylphosphonium acetate ([P8881 ][OAc])/DMSO or 1-ethyl-3-methylimidazolium acetate ([emim][OAc]).
Diethyl carbonate as a solvent for ruthenium catalysed C-H bond functionalisation.
Arockiam P, et al.
Green Chemistry, 11(11), 1871-1875 (2009)
Zhiyuan Zeng et al.
Faraday discussions, 176, 95-107 (2015-01-20)
We study the lithiation of a Au electrode in an electrochemical liquid cell using transmission electron microscopy (TEM). The commercial liquid electrolyte for lithium ion batteries (1 M lithium hexafluorophosphate LiPF6 dissolved in 1 : 1 (v/v) ethylene carbonate (EC) and diethyl

Articles

Experts discuss challenges and production processes of nickel-rich layered oxide cathode materials in energy storage systems.

Solid-state lithium fast-ion conductors are crucial for safer, high-energy-density all-solid-state batteries, addressing conventional battery limitations.

Solid oxide fuel cells and electrolyzers show potential for chemical-to-electrical energy conversion, despite early development stages.

Lithium-ion batteries offer high energy density and cyclic performance for portable electronic devices.

See All

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service