Sign In to View Organizational & Contract Pricing.
Select a Size
About This Item
Linear Formula:
(CH3CO2)3Sb
CAS Number:
Molecular Weight:
298.89
NACRES:
NA.23
PubChem Substance ID:
UNSPSC Code:
12352103
EC Number:
230-043-2
MDL number:
Product Name
Antimony(III) acetate, 99.99% trace metals basis
form
solid
InChI key
JVLRYPRBKSMEBF-UHFFFAOYSA-K
InChI
1S/3C2H4O2.Sb/c3*1-2(3)4;/h3*1H3,(H,3,4);/q;;;+3/p-3
SMILES string
CC(=O)O[Sb](OC(C)=O)OC(C)=O
assay
99.99% trace metals basis
reaction suitability
core: antimony
reagent type: catalyst
mp
126-131 °C (lit.)
density
1.22 g/mL at 25 °C (lit.)
Quality Level
Related Categories
Application
- New Complexes of Antimony(III) with Tridentate O,E,O-Ligands: Explores new antimony(III) complexes providing insights into their bonding and potential applications in materials science (U Böhme, M Herbig, 2023).
- Antimony (III) acetate as a catalyst for synthesis of xanthenes: Details the use of antimony(III) acetate as a catalyst in the synthesis of biologically active compounds, showcasing its efficiency in organic chemistry (F Hakimi, A Hassanabadi, 2015).
Features and Benefits
Antimony(III) acetate exhibits:
- 99.99% trace metals basis (<150 ppm) ensures minimal contamination with consistent performance in critical applications, leading to better outcomes.
- Suitable catalyst to produce synthetic fibres. It is moderately soluble in water
- Suitable for solvent free reactions.
General description
Antimony(III) Acetate is an is a high-purity compound (99.9% trace metals basis) that is widely used as a precursor in chemical vapor deposition (CVD) and Sol-gel atomic layer deposition (ALD) methods for the fabrication of antimony-based thin films, which are used in optoelectronic devices, including solar cells, and photodetectors. It is also employed as a dopant in semiconductor materials to modify their electrical and optical properties. Additionally, it serves as a catalyst in polymerization reactions and utilized in the synthesis of antimony-based nanoparticles and nanostructures, which find applications in energy storage systems such as batteries and supercapacitors.
signalword
Warning
hcodes
Hazard Classifications
Acute Tox. 4 Inhalation - Acute Tox. 4 Oral - Aquatic Chronic 2
Storage Class
11 - Combustible Solids
wgk
WGK 2
flash_point_f
Not applicable
flash_point_c
Not applicable
Choose from one of the most recent versions:
Already Own This Product?
Find documentation for the products that you have recently purchased in the Document Library.
Dandan Xie et al.
Nanoscale, 10(30), 14546-14553 (2018-07-20)
(Ag,Sn) co-doped Cu3SbSe4 nanocrystals are obtained via a facile microwave-assisted solvothermal method, and their thermoelectric properties are investigated in the temperature range from 300 K to 623 K. Sn-doping on Sb sites dramatically increases the carrier concentration and thus the
Yosra Chebbi et al.
Polymers, 11(3) (2019-04-10)
In this study, the synthesis of poly(ethylene furanoate) (PEF), catalyzed by five different catalysts-antimony acetate (III) (Sb Ac), zirconium (IV) isopropoxide isopropanal (Zr Is Ip), antimony (III) oxide (Sb Ox), zirconium (IV) 2,4-pentanedionate (Zr Pe) and germanium (IV) oxide (Ge
Wasim J Mir et al.
Scientific reports, 7(1), 9647-9647 (2017-08-31)
We investigate the potential use of colloidal nanoplates of Sb
Tianxin Bai et al.
Advanced materials (Deerfield Beach, Fla.), 33(8), e2007215-e2007215 (2021-01-21)
The colloidal synthesis of a new type of lead-free halide quadruple-perovskite nanocrystals (NCs) is reported. The photoluminescence quantum yield and charge-carrier lifetime of quadruple-perovskite NCs can be enhanced by 96 and 77-fold, respectively, via metal alloying. Study of charge-carrier dynamics
Bin Zhou et al.
Chemistry (Weinheim an der Bergstrasse, Germany), 21(31), 11143-11151 (2015-06-23)
We report an efficient approach to the synthesis of AgSbS2 nanocrystals (NCs) by colloidal chemistry. The size of the AgSbS2 NCs can be tuned from 5.3 to 58.3 nm with narrow size distributions by selection of appropriate precursors and fine control
Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.
Contact Technical Service
