Skip to Content
Merck
CN
All Photos(1)

Documents

436011

Sigma-Aldrich

Iron(III) phosphate dihydrate

Fe 29 %

Synonym(s):

Ferric phosphate dihydrate

Sign Into View Organizational & Contract Pricing


About This Item

Linear Formula:
FePO4 · 2H2O
CAS Number:
Molecular Weight:
186.85
MDL number:
UNSPSC Code:
12161600
PubChem Substance ID:
NACRES:
NA.22

form

powder

Quality Level

composition

Fe, 29%

reaction suitability

core: iron
reagent type: ligand
reaction type: Cross Couplings

functional group

amine
phosphine

SMILES string

O.O.[Fe+3].[O-]P([O-])([O-])=O

InChI

1S/Fe.H3O4P.2H2O/c;1-5(2,3)4;;/h;(H3,1,2,3,4);2*1H2/q+3;;;/p-3

InChI key

BMTOKWDUYJKSCN-UHFFFAOYSA-K

Looking for similar products? Visit Product Comparison Guide

Application

Iron(III) phosphate dihydrate (FePO4 x 2H2O) can be used as a catalyst in the synthesis of:
  • 3,4-dihydropyrimidin-2(1H)-ones and thiones by reacting with aldehydes, β-ketoesters and urea/thiourea via one pot-three component Biginelli reaction.
  • Methyl methacryalate (MMA) by oxidative dehydrogenation of methyl iso-butarate (MIB).

It can be also used in the synthesis of carbon coated lithium iron phosphate (LiFePO4) as the cathode material for lithium ion batteries. It is also used as a key ingredient in preparing phosphate glass fibers.

WGK

WGK 3

Flash Point(F)

Not applicable

Flash Point(C)

Not applicable

Personal Protective Equipment

dust mask type N95 (US), Eyeshields, Gloves

Certificates of Analysis (COA)

Search for Certificates of Analysis (COA) by entering the products Lot/Batch Number. Lot and Batch Numbers can be found on a product’s label following the words ‘Lot’ or ‘Batch’.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

Jun-Il Kim et al.
Journal of nanoscience and nanotechnology, 12(11), 8475-8480 (2013-02-21)
A composite of LiFePO4 and MgO-templated disordered mesoporous carbon was prepared through infiltrating a LiFePO4 precursor solution into the mesoporous carbon and growing LiFePO4 nanocrystals in the pore of the carbon. Transmission electron microscope (TEM) and scanning electron microscope (SEM)
A novel process to recycle spent LiFePO4 for synthesizing LiFePO4/C hierarchical microflowers.
Bian D, et al.
Electrochimica Acta, 190, 134-140 (2016)
Synthesis of porous amorphous FePO4 nanotubes and their lithium storage properties.
Ren Cai et al.
Chemistry (Weinheim an der Bergstrasse, Germany), 19(5), 1568-1572 (2013-01-03)
Preparation and Electrochemical Properties of the Spongelike Melamine Formaldehyde-Poly (vinyl alcohol)/LiFePO4 Porous Composite as the Lithium-Battery Cathode
Roddecha S, et al.
Industrial & Engineering Chemistry Research, 58(2), 632-642 (2018)
Wei Wang et al.
Chemical communications (Cambridge, England), 48(58), 7289-7291 (2012-06-16)
Novel iron phosphates microflowers which show SOD-like and peroxidase-like mimic activities were prepared, suggesting potential applications as a biocatalyst and a biosensor for H(2)O(2).

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service